skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: User-Friendly Covariance Estimation for Heavy-Tailed Distributions: A Survey and Recent Results
We offer a survey of recent results on covariance estimation for heavy- tailed distributions. By unifying ideas scattered in the literature, we propose user-friendly methods that facilitate practical implementation. Specifically, we introduce element-wise and spectrum-wise truncation operators, as well as their M-estimator counterparts, to robustify the sample covariance matrix. Different from the classical notion of robustness that is characterized by the breakdown property, we focus on the tail robustness which is evidenced by the connection between nonasymptotic deviation and confidence level. The key observation is that the estimators needs to adapt to the sample size, dimensional- ity of the data and the noise level to achieve optimal tradeoff between bias and robustness. Furthermore, to facilitate their practical use, we propose data-driven procedures that automatically calibrate the tuning parameters. We demonstrate their applications to a series of structured models in high dimensions, including the bandable and low-rank covariance matrices and sparse precision matrices. Numerical studies lend strong support to the proposed methods.  more » « less
Award ID(s):
1712956
PAR ID:
10096975
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Statistical science
ISSN:
2168-8745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The estimation of large precision matrices is crucial in modern multivariate analysis. Traditional sparsity assumptions, while useful, often fall short of accurately capturing the dependencies among features. This article addresses this limitation by focusing on precision matrix estimation for multivariate data characterized by a flexible yet unknown group structure. We introduce a novel approach that begins with the detection of this unknown group structure, clustering features within the low-dimensional space defined by the leading eigenvectors of the sample covariance matrix. Following this, we employ group-wise multivariate response linear regressions, guided by the identified group memberships, to estimate the precision matrix. We rigorously establish the theoretical foundations of our proposed method for both group detection and precision matrix estimation. The superior numerical performance of our approach is demonstrated through comprehensive simulation experiments and a comparative analysis with established methods in the field. Additionally, we apply our method to a real breast cancer dataset, showcasing its practical utility and effectiveness. Supplementary materials for this article are available online, including a standardized description of the materials available for reproducing the work. 
    more » « less
  2. Localizing more sources than sensors with a sparse linear array (SLA) has long relied on minimizing a distance between two covariance matrices and recent algorithms often utilize semidefinite programming (SDP). Although deep neural network (DNN)-based methods offer new alternatives, they still depend on covariance matrix fitting. In this paper, we develop a novel methodology that estimates the co-array subspaces from a sample covariance for SLAs. Our methodology trains a DNN to learn signal and noise subspace representations that are invariant to the selection of bases. To learn such representations, we propose loss functions that gauge the separation between the desired and the estimated subspace. In particular, we propose losses that measure the length of the shortest path between subspaces viewed on a union of Grassmannians, and prove that it is possible for a DNN to approximate signal subspaces. The computation of learning subspaces of different dimensions is accelerated by a new batch sampling strategy called consistent rank sampling. The methodology is robust to array imperfections due to its geometry-agnostic and data-driven nature. In addition, we propose a fully end-to-end gridless approach that directly learns angles to study the possibility of bypassing subspace methods. Numerical results show that learning such subspace representations is more beneficial than learning covariances or angles. It outperforms conventional SDP-based methods such as the sparse and parametric approach (SPA) and existing DNN-based covariance reconstruction methods for a wide range of signal-to-noise ratios (SNRs), snapshots, and source numbers for both perfect and imperfect arrays. 
    more » « less
  3. We develop a novel shrinkage rule for prediction in a high-dimensional non-exchangeable hierarchical Gaussian model with an unknown spiked covariance structure. We propose a family of priors for the mean parameter, governed by a power hyper-parameter, which encompasses independent to highly dependent scenarios. Corresponding to popular loss functions such as quadratic, generalized absolute, and Linex losses, these prior models induce a wide class of shrinkage predictors that involve quadratic forms of smooth functions of the unknown covariance. By using uniformly consistent estimators of these quadratic forms, we propose an efficient procedure for evaluating these predictors which outperforms factor model based direct plug-in approaches. We further improve our predictors by considering possible reduction in their variability through a novel coordinate-wise shrinkage policy that only uses covariance level information and can be adaptively tuned using the sample eigen structure. Finally, we extend our disaggregate model based methodology to prediction in aggregate models. We propose an easy-to-implement functional substitution method for predicting linearly aggregated targets and establish asymptotic optimality of our proposed procedure. We present simulation experiments as well as real data examples illustrating the efficacy of the proposed method. 
    more » « less
  4. Abstract Accurate classification of high‐dimensional data is important in many scientific applications. We propose a family of high‐dimensional classification methods based upon a comparison of the component‐wise distances of the feature vector of a sample to the within‐class population quantiles. These methods are motivated by the fact that quantile classifiers based on these component‐wise distances are the most powerful univariate classifiers for an optimal choice of the quantile level. A simple aggregation approach for constructing a multivariate classifier based upon these component‐wise distances to the within‐class quantiles is proposed. It is shown that this classifier is consistent with the asymptotically optimal classifier as the sample size increases. Our proposed classifiers result in simple piecewise‐linear decision rule boundaries that can be efficiently trained. Numerical results are shown to demonstrate competitive performance for the proposed classifiers on both simulated data and a benchmark email spam application. 
    more » « less
  5. Abstract A separable covariance model can describe the among-row and among-column correlations of a random matrix and permits likelihood-based inference with a very small sample size. However, if the assumption of separability is not met, data analysis with a separable model may misrepresent important dependence patterns in the data. As a compromise between separable and unstructured covariance estimation, we decompose a covariance matrix into a separable component and a complementary ‘core’ covariance matrix. This decomposition defines a new covariance matrix decomposition that makes use of the parsimony and interpretability of a separable covariance model, yet fully describes covariance matrices that are non-separable. This decomposition motivates a new type of shrinkage estimator, obtained by appropriately shrinking the core of the sample covariance matrix, that adapts to the degree of separability of the population covariance matrix. 
    more » « less