skip to main content


Title: Non-covalent complexes of the peptide fragment Gly-Asn-Asn-Gln-Gln-Asn-Tyr in the gas-phase. Photodissociative cross-linking, Born–Oppenheimer molecular dynamics, and ab initio computational binding study
Non-covalent complexes of the short amyloid peptide motif Gly-Asn-Asn-Gln-Gln-Asn-Tyr (GNNQQNY) with peptide counterparts that were tagged with a diazirine ring at the N-termini (*GNNQQNY) were generated as singly charged ions in the gas phase. Specific laser photodissociation (UVPD) of the diazirine tag in the gas-phase complexes at 355 nm generated transient carbene intermediates that underwent covalent cross-linking with the target GNNQQNY peptide. The crosslinking yields ranged between 0.8 and 4.5%, depending on the combinations of peptide C-terminal amides and carboxylates. The covalent complexes were analyzed by collision-induced dissociation tandem mass spectrometry (CID-MS 3 ), providing distributions of cross-links at the target peptide amino acid residues. A general preference for cross-linking at the target peptide Gln-4-Gln-5-Asn-6-Tyr-7 segment was observed. Born–Oppenheimer molecular dynamics calculations were used to obtain 100 ps trajectories for nine lowest free-energy conformers identified by ωB97X-D/6-31+G(d,p) gradient geometry optimizations. The trajectories were analyzed for close contacts between the incipient carbene atom and the X–H bonds in the target peptide. The close-contact analysis pointed to the Gln-5 and Tyr-7 residues as the most likely sites of cross-linking, consistent with the experimental CID-MS 3 results. Non-covalent binding in the amide complexes was evaluated by DFT calculations of structures and energies. Although antiparallel arrangements of the GNNQQNY and *GNNQQNY peptides were favored in low-energy gas-phase and solvated complexes, the conformations and peptide–peptide interface surfaces were found to differ from the secondary structure of the dry interface in GNNQQNY motifs of amyloid aggregates.  more » « less
Award ID(s):
1661815
NSF-PAR ID:
10097159
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
21
Issue:
4
ISSN:
1463-9076
Page Range / eLocation ID:
2046 to 2056
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The ability to understand the function of a protein often relies on knowledge about its detailed structure. Sometimes, seemingly insignificant changes in the primary structure of a protein, like an amino acid substitution, can completely disrupt a protein's function. Long-lived proteins (LLPs), which can be found in critical areas of the human body, like the brain and eye, are especially susceptible to primary sequence alterations in the form of isomerization and epimerization. Because long-lived proteins do not have the corrective regeneration capabilities of most other proteins, points of isomerism and epimerization that accumulate within the proteins can severely hamper their functions and can lead to serious diseases like Alzheimer's disease, cancer and cataracts. Whereas tandem mass spectrometry (MS/MS) in the form of collision-induced dissociation (CID) generally excels at peptide characterization, MS/MS often struggles to pinpoint modifications within LLPs, especially when the differences are only isomeric or epimeric in nature. One of the most prevalent and difficult-to-identify modifications is that of aspartic acid between its four isomeric forms: l -Asp, l -isoAsp, d -Asp, and d -isoAsp. In this study, peptides containing isomers of Asp were analyzed by charge transfer dissociation (CTD) mass spectrometry to identify spectral features that could discriminate between the different isomers. For the four isomers of Asp in three model peptides, CTD produced diagnostic ions of the form c n +57 on the N-terminal side of iso-Asp residues, but not on the N-terminal side of Asp residues. Using CTD, the l - and d forms of Asp and isoAsp could also be differentiated based on the relative abundance of y - and z ions on the C-terminal side of Asp residues. Differentiation was accomplished through a chiral discrimination factor, R , which compares an ion ratio in a spectrum of one epimer or isomer to the same ion ratio in the spectrum of a different epimer or isomer. The R values obtained using CTD are as robust and statistically significant as other fragmentation techniques, like radical directed dissociation (RDD). In summary, the extent of backbone and side-chain fragments produced by CTD enabled the differentiation of isomers and epimers of Asp in a variety of peptides. 
    more » « less
  2. null (Ed.)
    Chemical dynamics simulations are performed to study the collision induced gas phase unimolecular fragmentation of a model peptide with the sequence acetyl-His 1 -Cys 2 -Gly 3 -Pro 4 -Tyr 5 -His 6 -Cys 7 (analogue methanobactin peptide-5, amb 5 ) and in particular to explore the role of zinc binding in reactivity. Fragmentation pathways, their mechanisms, and collision energy transfer are discussed. The probability distributions of the pathways are compared with the results of the experimental IM-MS, MS/MS spectrum and previous thermal simulations. Collisional activation gives both statistical and non-statistical fragmentation pathways with non-statistical shattering mechanisms accounting for a relevant percentage of reactive trajectories, becoming dominant at higher energies. The tetra-coordination of zinc changes qualitative and quantitative fragmentation, in particular the shattering. The collision energy threshold for the shattering mechanism was found to be 118.9 kcal mol −1 which is substantially higher than the statistical Arrhenius activation barrier of 35.8 kcal mol −1 identified previously during thermal simulations. This difference can be attributed to the tetra-coordinated zinc complex that hinders the availability of the sidechains to undergo direct collision with the Ar projectile. 
    more » « less
  3. The PHF6 (Val-Gln-Ile-Val-Tyr-Lys) motif, found in all isoforms of the microtubule-associated protein tau, forms an integral part of ordered cores of amyloid fibrils formed in tauopathies and is thought to play a fundamental role in tau aggregation. Because PHF6 as an isolated hexapeptide assembles into ordered fibrils on its own, it is investigated as a minimal model for insight into the initial stages of aggregation of larger tau fragments. Even for this small peptide, however, the large length and time scales associated with fibrillization pose challenges for simulation studies of its dynamic assembly, equilibrium configurational landscape, and phase behavior. Here, we develop an accurate, bottom-up coarse-grained model of PHF6 for large-scale simulations of its aggregation, which we use to uncover molecular interactions and thermodynamic driving forces governing its assembly. The model, not trained on any explicit information about fibrillar structure, predicts coexistence of formed fibrils with monomers in solution, and we calculate a putative equilibrium phase diagram in concentration-temperature space. We also characterize the configurational and free energetic landscape of PHF6 oligomers. Importantly, we demonstrate with a model of heparin that this widely studied cofactor enhances the aggregation propensity of PHF6 by ordering monomers during nucleation and remaining associated with growing fibrils, consistent with experimentally characterized heparin–tau interactions. Overall, this effort provides detailed molecular insight into PHF6 aggregation thermodynamics and pathways and, furthermore, demonstrates the potential of modern multiscale modeling techniques to produce predictive models of amyloidogenic peptides simultaneously capturing sequence-specific effects and emergent aggregate structures.

     
    more » « less
  4. null (Ed.)
    Hydrogen bonds (HBs) play an essential role in the structure and catalytic action of enzymes, but a complete understanding of HBs in proteins challenges the resolution of modern structural ( i.e. , X-ray diffraction) techniques and mandates computationally demanding electronic structure methods from correlated wavefunction theory for predictive accuracy. Numerous amino acid sidechains contain functional groups ( e.g. , hydroxyls in Ser/Thr or Tyr and amides in Asn/Gln) that can act as either HB acceptors or donors (HBA/HBD) and even form simultaneous, ambifunctional HB interactions. To understand the relative energetic benefit of each interaction, we characterize the potential energy surfaces of representative model systems with accurate coupled cluster theory calculations. To reveal the relationship of these energetics to the balance of these interactions in proteins, we curate a set of 4000 HBs, of which >500 are ambifunctional HBs, in high-resolution protein structures. We show that our model systems accurately predict the favored HB structural properties. Differences are apparent in HBA/HBD preference for aromatic Tyr versus aliphatic Ser/Thr hydroxyls because Tyr forms significantly stronger O–H⋯O HBs than N–H⋯O HBs in contrast to comparable strengths of the two for Ser/Thr. Despite this residue-specific distinction, all models of residue pairs indicate an energetic benefit for simultaneous HBA and HBD interactions in an ambifunctional HB. Although the stabilization is less than the additive maximum due both to geometric constraints and many-body electronic effects, a wide range of ambifunctional HB geometries are more favorable than any single HB interaction. 
    more » « less
  5. Abstract

    Biopolymer analysis, including proteomics and glycomics, relies heavily on the use of mass spectrometry for structural elucidation, including sequence determination. Novel methods to improve sample workup, instrument performance, and data analysis continue to be developed to address shortcomings associated with sample preparation, analysis time, data quality, and data interpretation. Here, we present a new method that couples in‐source collision‐induced dissociation (IS‐CID) with two‐dimensional tandem mass spectrometry (2D MS/MS) as a way to simplify proteomics and glycomics workflows while also providing additional insight into analyte structures over traditional MS/MS experiments. Specifically, IS‐CID is employed as a gas‐phase digestion method, i.e., to break down intact full‐length polysaccharide or peptide ions prior to mass analysis. The resulting mixtures of oligomeric ions are analyzed by 2D‐MS/MS, a technique that allows association of product ions with their precursor ions without isolation of the latter. A novel data analysis strategy is introduced to leverage the second dimension of 2D MS/MS spectra, in which stairstep patterns, representing outputs of a molecule's MSnscans, are extracted for structural interconnectivity information on the oligomer. The results demonstrate the potential applicability of 2D MS/MS strategies to the modern omics workflow and structural analysis of various classes of biopolymers.

     
    more » « less