Abstract [Bis(pyridine)iodine(I)]+complexes offer controlled access to halonium ions under mild conditions. The reactivity of such stabilized halonium ions is primarily determined by their three‐center, four‐electron [N−I−N]+halogen bond. We studied the importance of chelation, strain, steric hindrance and electrostatic interaction for the structure and reactivity of halogen bonded halonium ions by acquiring their15N NMR coordination shifts and measuring their iodenium release rates, and interpreted the data with the support of DFT computations. A bidentate ligand stabilizes the [N−I−N]+halogen bond, decreasing the halenium transfer rate. Strain weakens the bond and accordingly increases the release rate. Remote modifications in the backbone do not influence the stability as long as the effect is entirely steric. Incorporating an electron‐rich moiety close by the [N−I−N]+motif increases the iodenium release rate. The analysis of the iodine(I) transfer mechanism highlights the impact of secondary interactions, and may provide a handle on the induction of stereoselectivity in electrophilic halogenations.
more »
« less
Impact of Benzannulation Site at the Diimine (N^N) Ligand on the Excited-State Properties and Reverse Saturable Absorption of Biscyclometalated Iridium(III) Complexes
- Award ID(s):
- 1800476
- PAR ID:
- 10097292
- Date Published:
- Journal Name:
- Inorganic Chemistry
- Volume:
- 58
- Issue:
- 9
- ISSN:
- 0020-1669
- Page Range / eLocation ID:
- 5483 to 5493
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
An official website of the United States government

