skip to main content

Title: O -Benzoyl side-chain conformations in 2,3,4,6-tetra- O -benzoyl-β- D -galactopyranosyl-(1→4)-1,2,6-tri- O -benzoyl-β- D -glucopyranose (ethyl acetate solvate) and 1,2,4,6-tetra- O -benzoyl-β- D -glucopyranose (acetone solvate)
The crystal structures of 2,3,4,6-tetra- O -benzoyl-β-D-galactopyranosyl-(1→4)-1,2,6-tri- O -benzoyl-β-D-glucopyranose ethyl acetate hemisolvate, C 61 H 50 O 18 ·0.5C 4 H 8 O 2 , and 1,2,4,6-tetra- O -benzoyl-β-D-glucopyranose acetone monosolvate, C 34 H 28 O 10 ·C 3 H 6 O, were determined and compared to those of methyl β-D-galactopyranosyl-(1→4)-β-D-glucopyranoside (methyl β-lactoside) and methyl β-D-glucopyranoside hemihydrate, C 7 H 14 O 6 ·0.5H 2 O, to evaluate the effects of O -benzoylation on bond lengths, bond angles and torsion angles. In general, O -benzoylation exerts little effect on exo- and endocyclic C—C and endocyclic C—O bond lengths, but exocyclic C—O bonds involved in O -benzoylation are lengthened by 0.02–0.04 Å depending on the site of substitution. The conformation of the O -benzoyl side-chains is highly conserved, with the carbonyl O atom either eclipsing the H atom attached to a 2°-alcoholic C atom or bisecting the H—C—H bond angle of an 1°-alcoholic C atom. Of the three bonds that determine the side-chain geometry, the C—O bond involving the alcoholic C atom exhibits greater rotational variability than the remaining C—O and C—C bonds involving the carbonyl C atom. These findings are in good agreement with recent solution NMR studies of the O -acetyl more » side-chain conformation in saccharides. « less
; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Acta Crystallographica Section C Structural Chemistry
Page Range or eLocation-ID:
161 to 167
Sponsoring Org:
National Science Foundation
More Like this
  1. The crystal structure of methyl 2-acetamido-2-deoxy-β-D-glycopyranosyl-(1→4)-β-D-mannopyranoside monohydrate, C 15 H 27 NO 11 ·H 2 O, was determined and its structural properties compared to those in a set of mono- and disaccharides bearing N -acetyl side-chains in βGlcNAc aldohexopyranosyl rings. Valence bond angles and torsion angles in these side chains are relatively uniform, but C—N (amide) and C—O (carbonyl) bond lengths depend on the state of hydrogen bonding to the carbonyl O atom and N—H hydrogen. Relative to N -acetyl side chains devoid of hydrogen bonding, those in which the carbonyl O atom serves as a hydrogen-bond acceptor display elongated C—O and shortened C—N bonds. This behavior is reproduced by density functional theory (DFT) calculations, indicating that the relative contributions of amide resonance forms to experimental C—N and C—O bond lengths depend on the solvation state, leading to expectations that activation barriers to amide cis – trans isomerization will depend on the polarity of the environment. DFT calculations also revealed useful predictive information on the dependencies of inter-residue hydrogen bonding and some bond angles in or proximal to β-(1→4) O -glycosidic linkages on linkage torsion angles ϕ and ψ. Hypersurfaces correlating ϕ and ψ with the linkage C—O—C bond anglemore »and total energy are sufficiently similar to render the former a proxy of the latter.« less
  2. The crystal structure of methyl α-D-mannopyranosyl-(1→3)-2- O -acetyl-β-D-mannopyranoside monohydrate, C 15 H 26 O 12 ·H 2 O, ( II ), has been determined and the structural parameters for its constituent α-D-mannopyranosyl residue compared with those for methyl α-D-mannopyranoside. Mono- O -acetylation appears to promote the crystallization of ( II ), inferred from the difficulty in crystallizing methyl α-D-mannopyranosyl-(1→3)-β-D-mannopyranoside despite repeated attempts. The conformational properties of the O -acetyl side chain in ( II ) are similar to those observed in recent studies of peracetylated mannose-containing oligosaccharides, having a preferred geometry in which the C2—H2 bond eclipses the C=O bond of the acetyl group. The C2—O2 bond in ( II ) elongates by ∼0.02 Å upon O -acetylation. The phi (φ) and psi (ψ) torsion angles that dictate the conformation of the internal O -glycosidic linkage in ( II ) are similar to those determined recently in aqueous solution by NMR spectroscopy for unacetylated ( II ) using the statistical program MA′AT , with a greater disparity found for ψ (Δ = ∼16°) than for φ (Δ = ∼6°).
  3. D-Mannosamine hydrochloride (2-amino-2-deoxy-D-mannose hydrochloride), C 6 H 14 NO 5 + ·Cl − , (I), crystallized from a methanol/ethyl acetate/ n -hexane solvent mixture at room temperature in a 4 C 1 chair conformation that is slightly distorted towards the C3,O5 B form. A comparison of the structural parameters of (I) with the corresponding parameters in α-D-glucosamine hydrochloride, (II), and β-D-galactosamine hydrochloride, (III)/(III′), was undertaken to evaluate the effects of ionic hydrogen bonding on structural properties. Three types of ionic hydrogen bonds are present in the crystals of (I)–(III)/(III′), i.e. N + —H...O, N + —H...Cl − , and O—H...Cl − . The exocyclic structural parameters in (I), (II), and (III)/(III′) appear to be most influenced by this bonding, especially the exocyclic hydroxy groups, which adopt eclipsed conformations enabled by ionic hydrogen bonding to the chloride anion. Anomeric disorder was observed in crystals of (I), with an α:β ratio of 37:63. However, anomeric configuration appears to exert minimal structural effects; that is, bond lengths, bond angles, and torsion angles are essentially identical in both anomers. The observed disorder at the anomeric C atom of (I) appears to be caused by the presence of the chloride anion and atom O3 ormore »O4 in proximal voids, which provide opportunities for hydrogen bonding to atom O1 in both axial and equatorial orientations.« less
  4. Isopropyl 3-deoxy-α-D- ribo -hexopyranoside (isopropyl 3-deoxy-α-D-glucopyranoside), C 9 H 18 O 5 , (I), crystallizes from a methanol–ethyl acetate solvent mixture at room temperature in a 4 C 1 chair conformation that is slightly distorted towards the C5 S C1 twist-boat form. A comparison of the structural parameters in (I), methyl α-D-glucopyranoside, (II), α-D-glucopyranosyl-(1→4)-D-glucitol (maltitol), (III), and 3-deoxy-α-D- ribo -hexopyranose (3-deoxy-α-D-glucopyranose), (IV), shows that most endocyclic and exocyclic bond lengths, valence bond angles and torsion angles in the aldohexopyranosyl rings are more affected by anomeric configuration, aglycone structure and/or the conformation of exocyclic substituents, such as hydroxymethyl groups, than by monodeoxygenation at C3. The structural effects observed in the crystal structures of (I)–(IV) were confirmed though density functional theory (DFT) calculations in computed structures (I) c –(IV) c . Exocyclic hydroxymethyl groups adopt the gauche – gauche ( gg ) conformation (H5 anti to O6) in (I) and (III), and the gauche – trans ( gt ) conformation (C4 anti to O6) in (II) and (IV). The O -glycoside linkage conformations in (I) and (III) resemble those observed in disaccharides containing β-(1→4) linkages.
  5. Methyl β-lactoside [methyl β-D-galactopyranosyl-(1→4)-β-D-glucopyranoside] monohydrate, C 13 H 24 O 11 ·H 2 O, (I), was obtained via spontaneous transformation of methyl β-lactoside methanol solvate, (II), during air-drying. Cremer–Pople puckering parameters indicate that the β-D-Gal p (β-D-galactopyranosyl) and β-D-Glc p (β-D-glucopyranosyl) rings in (I) adopt slightly distorted 4 C 1 chair conformations, with the former distorted towards a boat form ( B C1,C4 ) and the latter towards a twist-boat form ( O5 S C2 ). Puckering parameters for (I) and (II) indicate that the conformation of the βGal p ring is slightly more affected than the βGlc p ring by the solvomorphism. Conformations of the terminal O -glycosidic linkages in (I) and (II) are virtually identical, whereas those of the internal O -glycosidic linkage show torsion-angle changes of 6° in both C—O bonds. The exocyclic hydroxymethyl group in the βGal p residue adopts a gt conformation (C4′ anti to O6′) in both (I) and (II), whereas that in the βGlc p residue adopts a gg ( gauche – gauche ) conformation (H5 anti to O6) in (II) and a gt ( gauche – trans ) conformation (C4 anti to O6) in (I). The latter conformational change is critical tomore »the solvomorphism in that it allows water to participate in three hydrogen bonds in (I) as opposed to only two hydrogen bonds in (II), potentially producing a more energetically stable structure for (I) than for (II). Visual inspection of the crystalline lattice of (II) reveals channels in which methanol solvent resides and through which solvent might exchange during solvomorphism. These channels are less apparent in the crystalline lattice of (I).« less