skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: RT-Gang: Real-Time Gang Scheduling Framework for Safety-Critical Systems
In this paper, we present RT-Gang: a novel realtime gang scheduling framework that enforces a one-gang-at-atime policy. We find that, in a multicore platform, co-scheduling multiple parallel real-time tasks would require highly pessimistic worst-case execution time (WCET) and schedulability analysis—even when there are enough cores—due to contention in shared hardware resources such as cache and DRAM controller. In RT-Gang, all threads of a parallel real-time task form a real-time gang and the scheduler globally enforces the one-gangat-a-time scheduling policy to guarantee tight and accurate task WCET. To minimize under-utilization, we integrate a state-of-the-art memory bandwidth throttling framework to allow safe execution of best-effort tasks. Specifically, any idle cores, if exist, are used to schedule best-effort tasks but their maximum memory bandwidth usages are strictly throttled to tightly bound interference to real-time gang tasks. We implement RT-Gang in the Linux kernel and evaluate it on two representative embedded multicore platforms using both synthetic and real-world DNN workloads. The results show that RT-Gang dramatically improves system predictability and the overhead is negligible.  more » « less
Award ID(s):
1815959
PAR ID:
10097576
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings - IEEE Real-Time and Embedded Technology and Applications Symposium
ISSN:
1545-3421
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Due to the emergence of parallel architectures and parallel programming frameworks, modern real-time applications are often composed of parallel tasks that can occupy multiple processors at the same time. Among parallel task models, gang scheduling has received much attention in recent years due to its performance efficiency and applicability to parallel architectures such as graphics processing units. Despite this attention, the soft real-time (SRT) scheduling of gang tasks has received little attention. This paper, for the first time, considers the SRT-feasibility problem for gang tasks. Necessary and sufficient feasibility conditions are presented that relate the SRTfeasibility problem to the HRT-feasibility problem of “equivalent” task systems. Based on these conditions, intractability results for SRT gang scheduling are derived. This paper also presents server-based scheduling policies, corresponding schedulability tests, and an improved schedulability condition for the global-earlies-tdeadline-first (GEDF) scheduling of gang tasks. Moreover, GEDF is shown to be non-optimal in scheduling SRT gang tasks. 
    more » « less
  2. n this paper, we present a solution to the industrial challenge put forth by ARM in 2022. We systematically analyze the effect of shared resource contention to an augmented reality head-up display (AR-HUD) case-study application of the industrial challenge on a heterogeneous multicore platform, NVIDIA Jetson Nano. We configure the AR-HUD application such that it can process incoming image frames in real-time at 20Hz on the platform. We use Microarchitectural Denial-of-Service (DoS) attacks as aggressor workloads of the challenge and show that they can dramatically impact the latency and accuracy of the AR-HUD application. This results in significant deviations of the estimated trajec- tories from known ground truths, despite our best effort to mitigate their influence by using cache partitioning and real-time scheduling of the AR- HUD application. To address the challenge, we propose RT-Gang++, a partitioned real-time gang scheduling framework with last-level cache (LLC) and integrated GPU bandwidth throttling capabilities. By applying RT-Gang++, we are able to achieve desired level of performance of the AR-HUD application even in the presence of fully loaded aggressor tasks. 
    more » « less
  3. With the technology trend of hardware and workload consolidation for embedded systems and the rapid development of edge computing, there has been increasing interest in supporting parallel real-time tasks to better utilize the multi-core platforms while meeting the stringent real-time constraints. For parallel real-time tasks, the federated scheduling paradigm, which assigns each parallel task a set of dedicated cores, achieves good theoretical bounds by ensuring exclusive use of processing resources to reduce interferences. However, because cores share the last-level cache and memory bandwidth resources, in practice tasks may still interfere with each other despite executing on dedicated cores. Such resource interferences due to concurrent accesses can be even more severe for embedded platforms or edge servers, where the computing power and cache/memory space are limited. To tackle this issue, in this work, we present a holistic resource allocation framework for parallel real-time tasks under federated scheduling. Under our proposed framework, in addition to dedicated cores, each parallel task is also assigned with dedicated cache and memory bandwidth resources. Further, we propose a holistic resource allocation algorithm that well balances the allocation between different resources to achieve good schedulability. Additionally, we provide a full implementation of our framework by extending the federated scheduling system with Intel’s Cache Allocation Technology and MemGuard. Finally, we demonstrate the practicality of our proposed framework via extensive numerical evaluations and empirical experiments using real benchmark programs. 
    more » « less
  4. eal-time systems with hard timing constrains require known upper bounds on each task’s worst-case execution time (WCET) to determine if all deadlines can be met. One challenge in predictable execution is that Dynamic Random Access Memory (DRAM) cells must be refreshed periodically to maintain data validity, yet memory remains blocked during refresh, which results in overly pessimistic WCET bounds. This work contributes “Colored Refresh” to hide DRAM refresh overhead while preserving real-time schedulability for cyclic executives, which are widely used in highly critical systems. Colored Refresh partitions DRAM memory at rank granularity such that refreshes rotate round-robin from rank to rank. Real-time tasks are assigned different ranks via colored memory allocation. By cooperatively scheduling real-time tasks and refresh operations, memory requests no longer suffer from refresh interference. This reduces memory access latencies for tasks irrespective of DRAM density and size. Hence, Colored Refresh reduces a task’s WCET and makes its execution more predictable. 
    more » « less
  5. Bounding each task’s worst-case execution time (WCET) accurately is essential for real-time systems to determine if all deadlines can be met. Yet, access latencies to Dynamic Random Access Memory (DRAM) vary significantly due to DRAM refresh, which blocks access to memory cells. Variations further increase as DRAM density grows. This work contributes the “Colored Refresh Server” (CRS), a uniprocessor scheduling paradigm that partitions DRAM in two distinctly colored groups such that refreshes of one color occur in parallel to the execution of real-time tasks of the other color. By executing tasks in phase with periodic DRAM refreshes with opposing colors, memory requests no longer suffer from refresh interference. Experimental results confirm that refresh overhead 
    more » « less