skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Oxidation of β-Lactam Antibiotics by Peracetic Acid: Reaction Kinetics, Product and Pathway Evaluation
Peracetic acid (PAA) is a disinfection oxidant used in many industries including wastewater treatment. β-Lactams, a group of widely prescribed antibiotics, are frequently detected in wastewater effluent and in the natural aquatic environment. The reaction kinetics and transformation of seven β-lactams (cefalexin (CFX), cefadroxil (CFR), cefapirin (CFP), cephalothin (CFT), ampicillin (AMP), amoxicillin (AMX) and penicillin G (PG)) toward PAA were investigated to elucidate the behavior of β-lactams during PAA oxidation processes. The reaction follows second-order kinetics and is much faster at pH 5 and 7 than at pH 9 due to speciation of PAA. Reactivity to PAA follows the order of CFR ~ CFX > AMP ~ AMX > CFT ~ CFP ~ PG and is related to β-lactam’s nucleophilicity. The thioether sulfur of β-lactams is attacked by PAA to generate sulfoxide products. Presence of the phenylglycinyl amino group on β-lactams can significantly influence electron distribution and the highest occupied molecular orbital (HOMO) location and energy in ways that enhance the reactivity to PAA. Reaction rate constants obtained in clean water matrix can be used to accurately model the decay of β-lactams by PAA in surface water matrix and only slightly overestimate the decay in wastewater matrix. Results of this study indicate that the oxidative transformation of β-lactams by PAA can be expected under appropriate wastewater treatment conditions.  more » « less
Award ID(s):
1609361
PAR ID:
10097608
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Water research
Volume:
123
ISSN:
0043-1354
Page Range / eLocation ID:
153-161
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Peracetic acid (PAA) is a sanitizer with increasing use in food, medical and water treatment industries. Amino acids are important components in targeted foods for PAA treatment and ubiquitous in natural waterbodies and wastewater effluents as the primary form of dissolved organic nitrogen. To better understand the possible reactions, this work investigated the reaction kinetics and transformation pathways of selected amino acids towards PAA. Experimental results demonstrated that most amino acids showed sluggish reactivity to PAA except cysteine (CYS), methionine (MET), and histidine (HIS). CYS showed the highest reactivity with a very rapid reaction rate. Reactions of MET and HIS with PAA followed second-order kinetics with rate constants of 4.6 ± 0.2, and 1.8 ± 0.1 M−1s−1 at pH 7, respectively. The reactions were faster at pH 5 and 7 than at pH 9 due to PAA speciation. Low concentrations of H2O2 coexistent with PAA contributed little to the oxidation of amino acids. The primary oxidation products of amino acids with PAA were [O] addition compounds on the reactive sites at thiol, thioether and imidazole groups. Theoretical calculations were applied to predict the reactivity and regioselectivity of PAA electrophilic attacks on amino acids and improved mechanistic understanding. As an oxidative disinfectant, the reaction of PAA with organics to form byproducts is inevitable; however, this study shows that PAA exhibits lower and more selective reactivity towards biomolecules such as amino acids than other common disinfectants, causing less concern of toxic disinfection byproducts. This attribute may allow greater stability and more targeted actions of PAA in various applications. 
    more » « less
  2. A synthetic method for the efficient construction of β-hydroxylactones and lactams bearing α-quaternary carbon centers is described. This transformation relies on an electronically differentiated Lewis base catalyst, which is uniquely capable of promoting a reductive aldol reaction of α,α-disubstituted and α,α,β-trisubstituted enones. This approach provides a valuable synthetic alternative for carbon–carbon bond formation in complex molecular settings due to its orthogonal reactivity compared to that of traditional aldol reactions. Based on this method described herein, lactones, lactams, and morpholine amides bearing α-quaternary carbon centers are accessible in yields up to 85% and 50:1 dr. 
    more » « less
  3. Ozone is commonly used as a pre-disinfectant in potable water reuse treatment trains. Nitromethane was recently found as a ubiquitous ozone byproduct in wastewater, and the key intermediate toward chloropicrin during subsequent secondary disinfection of ozonated wastewater effluent with chlorine. However many utilities have switched from free chlorine to chloramines as a secondary disinfectant. The reaction mechanism and kinetics of nitromethane transformation by chloramines, unlike free chlorine, are unknown. In this work, the kinetics, mechanism, and products of nitromethane chloramination were studied. The expected principal product was chloropicrin, because chloramines are commonly assumed to react similarly, although more slowly, compared to free chlorine. Different molar yields of chloropicrin were observed at acidic, neutral, and basic conditions, and surprisingly, transformation products other than chloropicrin were found. Monochloronitromethane and dichloronitromethane were detected at basic pH, and the mass balance was initially poor at neutral pH. Much of the missing mass was later attributed to nitrate formation, from a newly-identified pathway involving monochloramine reacting as a nucleophile rather than halogenating agent, through a presumed SN2 mechanism. The study indicates that nitromethane chloramination, unlike chlorination, is likely to produce a range of products, whose speciation is a function of pH and reaction time. 
    more » « less
  4. Abstract Wastewater surveillance of SARS-CoV-2 has been used around the world to supplement clinical testing data for situational awareness of COVID-19 disease trends. Many regions of the world lack centralized wastewater collection and treatment infrastructure, which presents additional considerations for wastewater surveillance of SARS-CoV-2, including environmental decay of the RT-qPCR gene targets used for quantification of SARS-CoV-2 virions. Given the role of sunlight in the environmental decay of RNA, we evaluated sunlight photolysis kinetics of the N1 gene target in heat-inactivated SARS-CoV-2 with a solar simulator under laboratory conditions. Insignificant photolysis of the N1 target was observed in a photosensitizer-free matrix. Conversely, significant decay of the N1 target was observed in wastewater at a shallow depth (<1 cm). Given that sunlight irradiance is affected by several environmental factors, first-order decay rate models were used to evaluate the effect of water column depth, time of the year, and latitude on decay kinetics. Decay rate constants were found to decrease significantly with greater depth of the well-mixed water column, at high latitudes, and in the winter. Therefore, sunlight-mediated decay of the N1 gene target is likely to be minimal, and is unlikely to confound results from wastewater-based epidemiology programs utilizing wastewater-impacted surface waters. 
    more » « less
  5. Abstract Acetylperoxyl radical (CH3C(O)OO•) is among highly reactive organic radicals which are known to play crucial roles in atmospheric chemistry, aqueous chemistry and, most recently, peracetic acid (PAA)-based advanced oxidation processes. However, fundamental knowledge for its reactivity is scarce and severely hampers the understanding of relevant environmental processes. Herein, three independent experimental approaches were exploited for revelation and quantification of the reaction rates of acetylperoxyl radical. First, we developed and verified laser flash photolysis of biacetyl, ultraviolet (UV) photolysis of biacetyl, and pulse radiolysis of acetaldehyde, each as a clean source of CH3C(O)OO•. Then, using competition kinetics and selection of suitable probe and competitor compounds, the rate constants between CH3C(O)OO• and compounds of diverse structures were determined. The three experimental approaches complemented in reaction time scale and ease of operation, and provided cross-validation of the rate constants. Moreover, the formation of CH3C(O)OO• was verified by spin-trapped electron paramagnetic resonance, and potential influence of other reactive species in the systems was assessed. Overall, CH3C(O)OO• displays distinctively high reactivity and selectivity, reacting especially favorably with naphthyl and diene compounds (k ∼ 107–108 M−1 s−1) but sluggishly with N- and S-containing groups. Significantly, we demonstrated that incorporating acetylperoxyl radical-oxidation reactions significantly improved the accuracy in modeling the degradation of environmental micropollutants by UV/PAA treatment. This study is among the most comprehensive investigation for peroxyl radical reactivity to date, and establishes a robust methodology for investigating organic radical chemistry. The determined rate constants strengthen kinetic databases and improve modeling accuracy for natural and engineered systems. 
    more » « less