The Arecibo Pisces-Perseus Supercluster Survey(APPSS) aims to measure the infall and mass density along the PPS filament using red-shift independent distances obtained from the Baryonic Tully-Fisher Relation (BTFR). We will combine photometric data from the Sloan Digital Sky Survey with HI line spectroscopy obtained with the Arecibo telescope to derive BTFR distances and peculiar velocities over the PPS volume and its immediate foreground and background. To supplement the ALFALFA detections in the PPS volume, we have conducted new HI line observations with the Arecibo L-band Wide receiver system of blue, low surface brightness galaxies identified by their photometric properties in the Sloan Digital Sky Survey (SDSS). These targets are predicted to lie in the PPS volume but with HI masses of 8.0 < log HI mass < 9.0, putting them below the ALFALFA detection limit at that distance. We compare a preliminary sample of 634 galaxies detected as part from the APPSS survey with the main ALFALFA survey and other public catalogs of local galaxies, confirming that the new APPSS HI line detections are rotation-dominated, HI bearing galaxies with low stellar mass. Nearly all are star-forming, bluer, and of lower surface brightness, extinction and metallicity than optically selected samples. Preliminary BTFRs were calculated for both APPSS and ALFALFA galaxies and compared with BTFRs of simulated galaxies similar to those found in APPSS and ALFALFA using simulations such as IllustrisTNG (see poster by J. Borden). This work has been supported by NSF/AST-1714828 and the Brinson Foundation.
more »
« less
Improving Distance Estimates in the Local Universe: Applications to ALFALFA
To understand the larger scale structure of the local Universe (z < 0.06), we require adequate distance assignments and an understanding of their uncertainties. Local departures from smooth Hubble flow introduce large errors in distances derived from CMB velocities alone. For analysis of data from the blind extragalactic HI survey ALFALFA, the ALFALFA distance estimation routine takes advantage of pre-determined redshift-independent distances from the literature - including primary distances measurements such as TRGB or secondary Tully-Fisher measurements, a flow model developed by Masters (2005) and assignments of membership in known groups and clusters. Here we report an update of the previous methodology used for ALFALFA. To reduce the impact of orbital scatter and peculiar motions, a halo-based group-finder algorithm is used to assign a group CMB velocity and corresponding distance to galaxies identified as group/cluster members. We make use of six different group catalogs created using SDSS or 2MRS. For the nearest volume z < 0.02, the multi-attractor flow model is still used to account for local peculiar velocities. The new code, written in Python, is useable on other low-redshift galaxy catalogs, with mutable inputs for which group catalogs are used. We present an analysis of the impact of group catalog choice. This research has been supported by NSF grant NSF/AST-1714828 to M.P. Haynes and by the Brinson Foundation for the Arecibo Pisces-Perseus Supercluster Survey (APPSS).
more »
« less
- Award ID(s):
- 1637339
- PAR ID:
- 10097653
- Date Published:
- Journal Name:
- American Astronomical Society, AAS Meeting
- Volume:
- 233
- Page Range / eLocation ID:
- 261.06
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Arecibo Pisces-Perseus Supercluster Survey is a targeted HI survey of galaxies that began its second observing season in October 2016. The survey is conducted by members of the Undergraduate ALFALFA Team (UAT) and extensively involves undergraduates in observations, data reduction, and analysis. It aims to complement the HI sources identified by the ALFALFA extragalactic HI line survey by probing deeper in HI mass (to lower masses) than the legacy survey itself. Measurements of the HI line velocity widths will be combined with uniform processing of images obtained in the SDSS and GALEX public databases to localize the sample within the baryonic Tully Fisher relation, allowing estimates of their redshift-independent distances and thus their peculiar velocities. The survey is designed to constrain Pisces-Perseus Supercluster infall models by producing 5-σ detections of infall velocities to a precision of about 500 km/s. By targeting galaxies based on SDSS and GALEX photometry, we have achieved detection rates of 68% of the galaxies in our sample. We will discuss the target selection process, HI velocities and mass estimates from the 2015 fall observing season, preliminary results from 2016 observations, and preliminary comparisons with inflow models predicted by numerical simulations. This work has been supported by NSF grants AST-1211005, AST-1637339, AST-1637262.more » « less
-
The Arecibo Pisces-Perseus Supercluster Survey is a targeted HI survey of galaxies that began its second observing season in October 2016. The survey is conducted by members of the Undergraduate ALFALFA Team (UAT) and extensively involves undergraduates in observations, data reduction, and analysis. It aims to complement the HI sources identified by the ALFALFA extragalactic HI line survey by probing deeper in HI mass (to lower masses) than the legacy survey itself. Measurements of the HI line velocity widths will be combined with uniform processing of images obtained in the SDSS and GALEX public databases to localize the sample within the baryonic Tully Fisher relation, allowing estimates of their redshift-independent distances and thus their peculiar velocities.The survey is designed to constrain Pisces-Perseus Supercluster infall models by producing 5-σ detections of infall velocities to a precision of about 500 km/s. By targeting galaxies based on SDSS and GALEX photometry, we have achieved detection rates of 68% of the galaxies in our sample. We will discuss the target selection process, HI velocities and mass estimates from the 2015 fall observing season, preliminary results from 2016 observations, and preliminary comparisons with inflow models predicted by numerical simulations.This work has been supported by NSF grants AST-1211005, AST-1637339, AST-1637262.more » « less
-
The Arecibo Pisces-Perseus Supercluster Survey is a targeted HI survey of galaxies that began its second observing season in October 2016. The survey is conducted by members of the Undergraduate ALFALFA Team (UAT) and extensively involves undergraduates in observations, data reduction, and analysis. It aims to complement the HI sources identified by the ALFALFA extragalactic HI line survey by probing deeper in HI mass (to lower masses) than the legacy survey itself. Measurements of the HI line velocity widths will be combined with uniform processing of images obtained in the SDSS and GALEX public databases to localize the sample within the baryonic Tully Fisher relation, allowing estimates of their redshift-independent distances and thus their peculiar velocities.The survey is designed to constrain Pisces-Perseus Supercluster infall models by producing 5-σ detections of infall velocities to a precision of about 500 km/s. By targeting galaxies based on SDSS and GALEX photometry, we have achieved detection rates of 68% of the galaxies in our sample. We will discuss the target selection process, HI velocities and mass estimates from the 2015 fall observing season, preliminary results from 2016 observations, and preliminary comparisons with inflow models predicted by numerical simulations.This work has been supported by NSF grants AST-1211005, AST-1637339, AST-1637262.more » « less
-
Abstract The baryonic Tully–Fisher relation (BTFR) has applications in galaxy evolution as a test bed for the galaxy–halo connection and in observational cosmology as a redshift-independent secondary distance indicator. This analysis leverages the 31,000+ galaxy Arecibo Legacy Fast ALFA (AreciboL-band Feed Array) Survey (ALFALFA) sample—which provides redshifts, velocity widths, and Hicontent for a large number of gas-bearing galaxies in the local universe—to fit and test an extensive local universe BTFR. The fiducial relation is fit using a 3000-galaxy subsample of ALFALFA, and is shown to be consistent with the full sample. This BTFR is designed to be as inclusive of ALFALFA and comparable samples as possible. Velocity widths measured via an automated method andMbproxies extracted from survey data can be uniformly and efficiently measured for other samples, giving this analysis broad applicability. We also investigate the role of sample demographics in determining the best-fit relation. We find that the best-fit relations are changed significantly by changes to the sample mass range and to second order by changes to mass sampling, gas fraction, different stellar mass and velocity width measurements. We use a subset of ALFALFA with demographics that reflect the full sample to measure a robust BTFR slope of 3.30 ± 0.06. We apply this relation and estimate source distances, finding general agreement with flow-model distances as well as average distance uncertainties of ∼0.17 dex for the full ALFALFA sample. We demonstrate the utility of these distance estimates by applying them to a sample of sources in the Virgo vicinity, recovering signatures of infall consistent with previous work.more » « less
An official website of the United States government

