skip to main content

Title: HI-Bearing Ultra-Diffuse Galaxies: VLA Imaging of AGC 749290 and AGC 238764
Ultra-diffuse galaxies (UDGs) are galaxies with a very low optical surface brightness; they have very few stars for their given radius. Since UDGs are thus difficult to study in visible light, we observe radio emission from neutral hydrogen gas (HI) in these galaxies. Here we present observations of the HI gas in the UDGs AGC 749290 and AGC 238764. Initially selected from a sample of Ultra-Diffuse Galaxies detected in the ALFALFA survey, these sources were imaged as a part of a follow up program using the Jansky Very Large Array (VLA) in both C and D configurations. We reduce the data using the CASA software suite, removing radio interference, applying calibration, and creating images. From these data we obtain spectra and maps of the galaxies' HI distribution and radial velocities. We find that both sources show ordered gas distributions and rotation, and that the HI gas extends well beyond the already extended optical emission. Further, we estimate inclinations and plot these sources on the Baryonic Tully-Fisher relation, providing tentative evidence that these sources are rotating too slowly for their given mass. This work has been supported by NSF grant AST-1637339.
Authors:
;
Award ID(s):
1637339
Publication Date:
NSF-PAR ID:
10097655
Journal Name:
American Astronomical Society, AAS Meeting
Volume:
233
Page Range or eLocation-ID:
351.15
Sponsoring Org:
National Science Foundation
More Like this
  1. Ultra-diffuse galaxies (UDGs) have generated significant interest in recent years, as their stars appear too spread out relative to typical galaxies, and because some UDGs appear to have more than typical amounts of dark matter. The ALFALFA Survey has detected a number of UDGs in the field that are rich with neutral hydrogen (HI). We use the Karl G. Jansky Very Large Array (VLA) to image one of these HI-rich UDG, AGC 749251. We manually remove radio frequency interference, and reduce it using standard procedures in CASA. From the resulting data cubes we created 2D maps (moment 0 maps) andmore »maps of the radial velocities of the HI gas. We find that the HI in AGC 749251 shows reasonably ordered morphology and rotation, and extends beyond the already extended optical emission. We estimate the source's inclination and rotation velocity, constraining the source's dark matter content. We also compare our results to other, non-ultra diffuse galaxies, and suggest that the rotation velocity seems low compared with other sources of similar mass. This work has been supported by NSF grant AST-1637339.« less
  2. We present deep HI and optical imaging of AGC 229101, an enigmatic and potentially unique source detected in the ALFALFA survey. Though it has an HI mass >109 solar masses, it is not detected in SDSS imaging, and has a very narrow HI line width. Deep follow up imaging with pODI on the WIYN 3.5m at KPNO detects a very blue, very low surface brightness optical counterpart with a stellar mass <107 solar masses, giving a gas fraction of MHI/M* in excess of 200. Low resolution WSRT HI imaging and higher resolution VLA B-array imaging reveal that AGC 229101 appearsmore »to consist of two connected HI components, with the optical counterpart associated with the peak column density in the northern component. The two components have approximately equal mass and radii, and together stretch over >80 kpc as projected on the sky. We compare the properties of AGC 229101 to other extreme HI-rich sources, and demonstrate that its properties appear to be unique relative to others sources in ALFALFA. We discuss potential explanations, including a tidal encounter between neighboring sources, a merger of two independent, almost dark sources, and gas in-fall along a filament.« less
  3. The ALFALFA blind extragalactic survey has populated the faint end of the neutral hydrogen (HI) mass function with statistical confidence for the first time. Of particular interest is a subset of the ALFALFA detections, termed "ultra-compact high-velocity clouds" (UCHVCs). These systems, if located within ~1 Mpc, would populate the lowest-mass end of the HI mass function. Subsequent optical imaging has revealed that some of these UCHVCs harbor associated (though sparse) stellar populations, revealing that they may be some of the most extreme galaxies known in the Local Volume, with optical properties akin to ultra-faint dwarf galaxies but with significant neutralmore »gas reservoirs. In this campaign, we investigate the neutral hydrogen properties of six UCHVC candidate galaxies using deep VLA HI spectral line imaging. A companion poster (Bralts-Kelly et al.) presents 3D kinematic modeling of selected sources. Here, we show the imaging products and discuss the morphological and kinematic properties of the six chosen sources: AGC 198606, AGC 215417, AGC219656, AGC 249525, AGC 258237, and AGC 268069.« less
  4. We present VLA HI imaging of the "Almost Dark" galaxies AGC 227982, AGC 268363, and AGC 219533. Selected from the ALFALFA survey, "Almost Dark" galaxies have significant HI reservoirs but lack an obvious stellar counterpart in survey-depth ground-based optical imaging. These three HI-rich objects harbor some of the most extreme levels of suppressed star formation amongst the isolated sources in the ALFALFA catalog. Our new multi-configuration, high angular (~20") and spectral (1.7 km/s) resolution HI observations produce spatially resolved column density and velocity distribution moment maps. We compare these images to Sloan Digitized Sky Survey (SDSS) optical images. By localizingmore »the HI gas, we identify previously unknown optical components (offset from the ALFALFA pointing center) for AGC 227982 and AGC 268363, and confirm the association with a very low surface brightness stellar counterpart for AGC 219533. Baryonic masses are derived from VLA flux integral values and ALFALFA distance estimates, giving answers consistent with those derived from ALFALFA fluxes. All three sources appear to have fairly regular HI morphologies and show evidence of ordered rotation.Support for this work was provided by NSF grant 1211683 to JMC at Macalester College.« less
  5. ABSTRACT We study the gas kinematics of a sample of six isolated gas-rich low surface brightness galaxies, of the class called ultra-diffuse galaxies (UDGs). These galaxies have recently been shown to be outliers from the baryonic Tully–Fisher relation (BTFR), as they rotate much slower than expected given their baryonic mass, and to have a baryon fraction similar to the cosmological mean. By means of a 3D kinematic modelling fitting technique, we show that the H i in our UDGs is distributed in ‘thin’ regularly rotating discs and we determine their rotation velocity and gas velocity dispersion. We revisit the BTFR addingmore »galaxies from other studies. We find a previously unknown trend between the deviation from the BTFR and the exponential disc scale length valid for dwarf galaxies with circular speeds ≲ 45 km s−1, with our UDGs being at the extreme end. Based on our findings, we suggest that the high baryon fractions of our UDGs may originate due to the fact that they have experienced weak stellar feedback, likely due to their low star formation rate surface densities, and as a result they did not eject significant amounts of gas out of their discs. At the same time, we find indications that our UDGs may have higher-than-average stellar specific angular momentum, which can explain their large optical scale lengths.« less