- Award ID(s):
- 1813490
- PAR ID:
- 10097682
- Date Published:
- Journal Name:
- IJCAI-ECAI Workshop on AI for Internet of Things
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Android, the most dominant Operating System (OS), experiences immense popularity for smart devices for the last few years. Due to its' popularity and open characteristics, Android OS is becoming the tempting target of malicious apps which can cause serious security threat to financial institutions, businesses, and individuals. Traditional anti-malware systems do not suffice to combat newly created sophisticated malware. Hence, there is an increasing need for automatic malware detection solutions to reduce the risks of malicious activities. In recent years, machine learning algorithms have been showing promising results in classifying malware where most of the methods are shallow learners like Logistic Regression (LR). In this paper, we propose a deep learning framework, called Droid-NNet, for malware classification. However, our proposed method Droid-NNet is a deep learner that outperforms existing cutting-edge machine learning methods. We performed all the experiments on two datasets (Malgenome-215 & Drebin-215) of Android apps to evaluate Droid-NNet. The experimental result shows the robustness and effectiveness of Droid-NNet.more » « less
-
Malicious software (malware) is a major cyber threat that has to be tackled with Machine Learning (ML) techniques because millions of new malware examples are injected into cyberspace on a daily basis. However, ML is vulnerable to attacks known as adversarial examples. In this article, we survey and systematize the field of Adversarial Malware Detection (AMD) through the lens of a unified conceptual framework of assumptions, attacks, defenses, and security properties. This not only leads us to map attacks and defenses to partial order structures, but also allows us to clearly describe the attack-defense arms race in the AMD context. We draw a number of insights, including: knowing the defender’s feature set is critical to the success of transfer attacks; the effectiveness of practical evasion attacks largely depends on the attacker’s freedom in conducting manipulations in the problem space; knowing the attacker’s manipulation set is critical to the defender’s success; and the effectiveness of adversarial training depends on the defender’s capability in identifying the most powerful attack. We also discuss a number of future research directions.more » « less
-
Deception has been proposed in the literature as an effective defense mechanism to address Advanced Persistent Threats (APT). However, administering deception in a cost-effective manner requires a good understanding of the attack landscape. The attacks mounted by APT groups are highly diverse and sophisticated in nature and can render traditional signature based intrusion detection systems useless. This necessitates the development of behavior oriented defense mechanisms. In this paper, we develop Decepticon (Deception-based countermeasure) a Hidden Markov Model based framework where the indicators of compromise (IoC) are used as the observable features to aid in detection. This framework would help in selecting an appropriate deception script when faced with APTs or other similar malware and trigger an appropriate defensive response. The effectiveness of the model and the associated framework is demonstrated by considering ransomware as the offending APT in a networked system.more » « less
-
Internet of Things (IoT) cyber threats, exemplified by jackware and crypto mining, underscore the vulnerability of IoT devices. Due to the multi-step nature of many attacks, early detection is vital for a swift response and preventing malware propagation. However, accurately detecting early-stage attacks is challenging, as attackers employ stealthy, zero-day, or adversarial machine learning to evade detection. To enhance security, we propose ARIoTEDef, an Adversarially Robust IoT Early Defense system, which identifies early-stage infections and evolves autonomously. It models multi-stage attacks based on a cyber kill chain and maintains stage-specific detectors. When anomalies in the later action stage emerge, the system retroactively analyzes event logs using an attention-based sequence-to-sequence model to identify early infections. Then, the infection detector is updated with information about the identified infections. We have evaluated ARIoTEDef against multi-stage attacks, such as the Mirai botnet. Results show that the infection detector’s average F1 score increases from 0.31 to 0.87 after one evolution round. We have also conducted an extensive analysis of ARIoTEDef against adversarial evasion attacks. Our results show that ARIoTEDef is robust and benefits from multiple rounds of evolution.
-
Internet of Things (IoT) devices have increased drastically in complexity and prevalence within the last decade. Alongside the proliferation of IoT devices and applications, attacks targeting them have gained popularity. Recent large-scale attacks such as Mirai and VPNFilter highlight the lack of comprehensive defenses for IoT devices. Existing security solutions are inadequate against skilled adversaries with sophisticated and stealthy attacks against IoT devices. Powerful provenance-based intrusion detection systems have been successfully deployed in resource-rich servers and desktops to identify advanced stealthy attacks. However, IoT devices lack the memory, storage, and computing resources to directly apply these provenance analysis techniques on the device. This paper presents ProvIoT, a novel federated edge-cloud security framework that enables on-device syscall-level behavioral anomaly detection in IoT devices. ProvIoT applies federated learning techniques to overcome data and privacy limitations while minimizing network overhead. Infrequent on-device training of the local model requires less than 10% CPU overhead; syncing with the global models requires sending and receiving 2MB over the network. During normal offline operation, ProvIoT periodically incurs less than 10% CPU overhead and less than 65MB memory usage for data summarization and anomaly detection. Our evaluation shows that ProvIoT detects fileless malware and stealthy APT attacks with an average F1 score of 0.97 in heterogeneous real-world IoT applications. ProvIoT is a step towards extending provenance analysis to resource-constrained IoT devices, beginning with well-resourced IoT devices such as the RaspberryPi, Jetson Nano, and Google TPU.more » « less