Recent advancements in energy-harvesting techniques provide an alternative to batteries for resource-constrained IoT devices and lead to a new computing paradigm, the intermittent computing model. In this model, a software module continues its execution from where it left off when an energy shortage occurred. Enforcing security of an intermittent software module is challenging because its power-off state has to be protected from a malicious adversary in addition to its power-on state, while the security mechanisms put in place must have a low overhead on the performance, resource consumption, and cost of a device. In this paper, we propose SIA (Secure Intermittent Architecture), a security architecture for resource-constrained IoT devices. SIA leverages low-cost security features available in commercial off-the-shelf microcontrollers to protect both the power-on and power-off state of an intermittent software module. Therefore, SIA enables a host of secure intermittent computing applications such as self-attestation, remote attestation, and secure communication. Moreover, our architecture provides confidentiality and integrity guarantees to an intermittent computing module at no cost compared to previous approaches in the literature that impose significant overheads. The salient characteristic of SIA is that it does not require any hardware modifications, and hence, it can be directly applied to existingmore »
SIA: Secure Intermittent Architecture for Off-the-Shelf Resource-Constrained Microcontrollers
Recent advancements in energy-harvesting techniques provide an alternative to batteries for resource constrained IoT devices and lead to a new computing paradigm, the intermittent computing model. In this model, a software module continues its execution from where it left off when an energy shortage occurred. Enforcing security of an intermittent software module is challenging because its power-off state has to be protected from a malicious adversary in addition to its power-on state, while the security mechanisms put in place must have a low overhead on the performance, resource consumption, and cost of a device. In this paper, we propose SIA (Secure Intermittent Architecture), a security architecture for resource-constrained IoT devices. SIA leverages low-cost security features available in commercial off-the-shelf microcontrollers to protect both the power-on and power-off state of an intermittent software module. Therefore, SIA enables a host of secure intermittent computing applications such as self-attestation, remote attestation, and secure communication. Moreover, our architecture provides confidentiality and integrity guarantees to an intermittent computing module at no cost compared to previous approaches in the literature that impose significant overheads. The salient characteristic of SIA is that it does not require any hardware modifications, and hence, it can be directly applied to more »
- Award ID(s):
- 1704176
- Publication Date:
- NSF-PAR ID:
- 10097899
- Journal Name:
- IEEE International Symposium on Hardware Oriented Security and Trust (HOST)
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Internet of Things (IoT) is an emerging technology that aims to connect our environment to the internet in the same way that personal computers connected people. As this technology progresses, the IoT paradigm becomes more prevalent in our everyday lives. The nature of IoT applications necessitates devices that are low-cost, power-sensitive, integrated, unobtrusive, and interoperable with existing cloud platforms and services, for example, Amazon AWS IoT, IBM Watson IoT. As a result, these devices are often small in size, with just enough computing power needed for their specific tasks. These resource-constrained devices are often unable to implement traditional network security measures and represent a vulnerability to network attackers as a result. Few frameworks are positioned to handle the influx of this new technology and the security concerns associated with it. Current solutions fail to provide a comprehensive and multi-layer solution to these inherent IoT security vulnerabilities. This paper presents a layered approach to IoT testbed that aims to bridge multiple connection standards and cloud platforms. To solve challenges surrounding this multi-layer IoT testbed, we propose a mesh inside a mesh IoT network architecture. Our designed "edge router" incorporates two mesh networks together and performs seamlessly transmission of multi-standard packets.more »
-
Intermittent systems operate embedded devices without a source of constant reliable power, relying instead on an unreliable source such as an energy harvester. They overcome the limitation of intermittent power by retaining and restoring system state as checkpoints across periods of power loss. Previous works have addressed a multitude of problems created by the intermittent paradigm, but do not consider securing intermittent systems. In this paper, we address the security concerns created through the introduction of checkpoints to an embedded device. When the non-volatile memory that holds checkpoints can be tampered, the checkpoints can be replayed or duplicated. We propose secure application continuity as a defense against these attacks. Secure application continuity provides assurance that an application continues where it left off upon power loss. In our secure continuity solution, we define a protocol that adds integrity, authenticity, and freshness to checkpoints. We develop two solutions for our secure checkpointing design. The first solution uses a hardware accelerated implementation of AES, while the second one is based on a software implementation of a lightweight cryptographic algorithm, Chaskey. We analyze the feasibility and overhead of these designs in terms of energy consumption, execution time, and code size across several application configurations.more »
-
With the recent deployment of 5G network, the ever increasing IoT has got a tremendous boost in its expansion and already has penetrated well into the government, commercial and private sectors. With the countless IoT devices and myriad of applications, many of them are resource constrained and have limited energy budget. These IoT devices demand low-energy technique for their computing and communication tasks to stay active for longer period. The two main baseband processes that dissipate bulk of CPU power from the IoT device are synchronization and Finite Impulse Response (FIR) filtering. In this circumstance, hardware-based baseband processing can take these tasks off of the CPU and may significantly reduce energy consumption. While conventional Binary Radix Computing (BC)-based hardware modules can improve power dissipation, Stochastic Computing (SC)-based hardware will certainly cut down much more both the power as well as silicon space in comparison. With this motivation, we propose novel SC-based hardware designs in regards to synchronization and Finite Impulse Response (FIR) filter for resource constraint IoT devices. Comparative analysis shows that our proposed SC-based design can reduce significantly more power and silicon area compared to the BC as well as other proposed SC designs.
-
Internet of Things (IoT) devices and applications can have significant vulnerabilities, which may be exploited by adversaries to cause considerable harm. An important approach for mitigating this threat is remote attestation, which enables the defender to remotely verify the integrity of devices and their software. There are a number of approaches for remote attestation, and each has its unique advantages and disadvantages in terms of detection accuracy and computational cost. Further, an attestation method may be applied in multiple ways, such as various lev- els of software coverage. Therefore, to minimize both security risks and computational overhead, defenders need to decide strategically which attestation methods to apply and how to apply them, depending on the characteristic of the devices and the potential losses. To answer these questions, we first develop a testbed for remote attestation of IoT devices, which enables us to measure the detection accuracy and performance overhead of various attestation methods. Our testbed integrates two example IoT applications, memory-checksum based attestation, and a variety of software vulnerabilities that allow adversaries to inject arbitrary code into running applications. Second, we model the problem of finding an optimal strategy for applying remote attestation as a Stackelberg security game between amore »