skip to main content


Title: Valorisation of waste to yield recyclable composites of elemental sulfur and lignin
Lignin is the second-most abundant biopolymer in nature and remains a severely underutilized waste product of agriculture and paper production. Sulfur is the most underutilized byproduct of petroleum and natural gas processing industries. On their own, both sulfur and lignin exhibit very poor mechanical properties. In the current work, a strategy for preparing more durable composites of sulfur and lignin, LSx , is described. Composites LSx were prepared by reaction of allyl lignin with elemental sulfur, whereby some of the sulfur forms polysulfide crosslinks with lignin to yield a three-dimensional network. Even relatively small quantities (<5 wt%) of the polysulfide-crosslinked lignin network provides up to a 3.4-fold increase in mechanical reinforcement over sulfur alone, as measured by the storage moduli and flexural strength determined from dynamic mechanical analysis (temperature dependence and stress–strain analysis). Notably, LSx composites could be repeatedly remelted and recast after pulverization without loss of mechanical strength. These initial studies suggest potential practical applications of lignin and sulfur waste streams in the ongoing quest towards more sustainable, recyclable structural materials.  more » « less
Award ID(s):
1708844
NSF-PAR ID:
10097959
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry A
ISSN:
2050-7488
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Despite improvements in chemical recycling, most post‐consumer plastics are still deposited in landfills where they pose a significant threat to ecological health. Herein we report a two‐stage method for chemically recycling poly(ethylene terephthalate) (PET) using terpenoids and waste sulfur to yield composites. In this method, post‐consumer PET (from beverage bottles) undergoes transesterification with a terpenoid alcohol (citronellol or geraniol) to yield low‐molecular PET oligomers. The terpene‐derived alkenes in these PET oligomer derivatives then served as reaction sites for inverse vulcanization with 90 wt% elemental sulfur to form compositeCPS(using citronellol) orGPS(using geraniol). Composition, mechanical, thermal, and morphological properties were characterized by NMR spectroscopy, MALDI, FT‐IR spectroscopy, compressive and flexural strength analysis, TGA, DSC, elemental analysis, and SEM/EDX. The compositesCPS(compressive strength = 5.20 MPa, flexural strength = 3.10 MPa) andGPS(compressive strength = 5.8 MPa, flexural strength = 2.77 MPa) showed mechanical strengths comparable to those of commercial bricks (classification C62 for general building). The approach delineated herein thus represents a method to chemically recycle waste plastic with industrial waste sulfur and plant‐derived terpenoids to yield composites having favorable properties comparable to existing building materials.

     
    more » « less
  2. Abstract

    Environmental contamination by plastic waste is a growing threat to the environment and human health. Unfortunately, most post‐consumer plastics are still disposed of in landfills, even plastics that could be easily recycled via simple chemical processes. This disconnect between technology and implementation is partly due to the economic barrier posed by multi‐step processes that convert plastic waste into commodity goods. There is an urgent need for green methods to convert plastic waste directly into marketable commodities via simple processes. Herein we report a simple, single‐stage process to chemically recycle poly(ethylene terephthalate) (PET) to yield composites having thermal and mechanical properties that are competitive with commercial structural materials like Portland cement. In this protocol, a mixture of PET and geraniol are heated with elemental sulfur. In this process, transesterification between geraniol and PET with concomitant thiocracking of the PET backbone leads to the formation of a highly‐crosslinked sulfur–PET–geraniol (SPG) network composite. The composite exhibited compressive strength (23.1 MPa) greater than that required for Portland cement to be used in building foundations. This new, single‐stage chemical recycling strategy thus employs a bio‐olefin and waste sulfur to convert PET waste into a durable composite that could serve as a sustainable alternative to traditional cements.

     
    more » « less
  3. null (Ed.)
    Lignin is the most abundant aromatic biopolymer and is the sustainable feedstock most likely to supplant petroleum-derived aromatics and downstream products. Rich in functional groups, lignin is largely peerless in its potential for chemical modification towards attaining target properties. Lignin’s crosslinked network structure can be exploited in composites to endow them with remarkable strength, as exemplified in timber and other structural elements of plants. Yet lignin may also be depolymerized, modified, or blended with other polymers. This review focuses on substituting petrochemicals with lignin derivatives, with a particular focus on applications more significant in terms of potential commercialization volume, including polyurethane, phenol-formaldehyde resins, lignin-based carbon fibers, and emergent melt-processable waste-derived materials. This review will illuminate advances from the last eight years in the prospective utilization of such lignin-derived products in a range of application such as adhesives, plastics, automotive components, construction materials, and composites. Particular technical issues associated with lignin processing and emerging alternatives for future developments are discussed. 
    more » « less
  4. null (Ed.)
    Lignocellulosic biomass holds a tremendous opportunity for transformation into carbon-negative materials, yet the expense of separating biomass into its cellulose and lignin components remains a primary economic barrier to biomass utilization. Herein is reported a simple procedure to convert several biomass-derived materials into robust, recyclable composites through their reaction with elemental sulfur by inverse vulcanization, a process in which olefins are crosslinked by sulfur chains. In an effort to understand the chemistry and the parameters leading to the strength of these composites, sulfur was reacted with four biomass-derivative comonomers: (1) unmodified peanut shell powder, (2) allyl peanut shells, (3) ‘mock’ allyl peanut shells (a mixture containing independently-prepared allyl cellulose and allyl lignin), or (4) peanut shells that have been defatted by extraction of peanut oil. The reactions of these materials with sulfur produce the biomass–sulfur composites PSx , APSx , mAPSx and dfPSx , respectively, where x = wt% sulfur in the monomer feed. The influence of biomass : sulfur ratio was assessed for PSx and APSx . Thermal/mechanical properties of composites were evaluated for comparison to commercial materials. Remarkably, unmodified peanut shell flour can simply be heated with elemental sulfur to produce composites having flexural/compressive strengths exceeding those of Portland cement, an effect traced to the presence of olefin-bearing peanut oil in the peanut shells. When allylated peanut shells are used in this process, a composite having twice the compressive strength of Portland cement is attained. 
    more » « less
  5. Abstract

    Environmental damage caused by waste plastics and downstream chemical breakdown products is a modern crisis. Endocrine‐disrupting bisphenol A (BPA), found in breakdown products of poly(bisphenol A carbonate) (PC), is an especially pernicious example that interferes with the reproduction and development of a wide range of organisms, including humans. Herein we report a single‐stage thiocracking method to chemically upcycle polycarbonate using elemental sulfur, a waste product of fossil fuel refining. Importantly, this method disintegrates bisphenol A units into monoaryls, thus eliminating endocrine‐disrupting BPA from the material and from any potential downstream waste. Thiocracking of PC (10 wt%) with elemental sulfur (90 wt%) at 320 °C yields the highly crosslinked networkSPC90. The composition, thermal, morphological, and mechanical properties ofSPC90were characterized by FT‐IR spectroscopy, TGA, DSC, elemental analysis, SEM/EDX, compressive strength tests, and flexural strength tests. The compositeSPC90(compressive strength = 12.8 MPa, flexural strength = 4.33 MPa) showed mechanical strengths exceeding those of commercial bricks and competitive with those of mineral cements. The approach discussed herein represents a method to chemically upcycle polycarbonate while deconstructing BPA units, and valorizing waste sulfur to yield structurally viable building materials that could replace less‐green legacy materials.

     
    more » « less