skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deconstructing water’s diffuse OH stretching vibrational spectrum with cold clusters
The diffuse vibrational envelope displayed by water precludes direct observation of how different hydrogen-bond topologies dictate the spectral response of individual hydroxy group (OH) oscillators. Using cold, isotopically labeled cluster ions, we report the spectral signatures of a single, intact water (H2O) molecule embedded at various sites in the clathrate-like cage structure adopted by the Cs+·(D2O)20 ion. These patterns reveal the site-dependent correlation between the frequencies of the two OH groups on the same water molecule and establish that the bound OH companion of the free OH group exclusively accounts for bands in the lower-energy region of the spectrum. The observed multiplet structures reveal the homogeneous linewidths of the fundamentals and quantify the anharmonic contributions arising from coupling to both the intramolecular bending and intermolecular soft modes.  more » « less
Award ID(s):
1465100
PAR ID:
10098016
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Science
Volume:
364
Issue:
6437
ISSN:
0036-8075
Page Range / eLocation ID:
275-278
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Decoding the structural information contained in the interfacial vibrational spectrum of water requires understanding how the spectral signatures of individual water molecules respond to their local hydrogen bonding environments. In this study, we isolated the contributions for the five classes of sites that differ according to the number of donor (D) and acceptor (A) hydrogen bonds that characterize each site. These patterns were measured by exploiting the unique properties of the water cluster cage structures formed in the gas phase upon hydration of a series of cations M+·(H2O)n (M = Li, Na, Cs, NH4, CH3NH3, H3O, and n = 5, 20–22). This selection of ions was chosen to systematically express the A, AD, AAD, ADD, and AADD hydrogen bonding motifs. The spectral signatures of each site were measured using two-color, IR–IR isotopomer-selective photofragmentation vibrational spectroscopy of the cryogenically cooled, mass selected cluster ions in which a single intact H2O is introduced without isotopic scrambling, an important advantage afforded by the cluster regime. The resulting patterns provide an unprecedented picture of the intrinsic line shapes and spectral complexities associated with excitation of the individual OH groups, as well as the correlation between the frequencies of the two OH groups on the same water molecule, as a function of network site. The properties of the surrounding water network that govern this frequency map are evaluated by dissecting electronic structure calculations that explore how changes in the nearby network structures, both within and beyond the first hydration shell, affect the local frequency of an OH oscillator. The qualitative trends are recovered with a simple model that correlates the OH frequency with the network-modulated local electron density in the center of the OH bond. 
    more » « less
  2. Small, inorganic hydrides are likely hiding in plain sight, waiting to be detected toward various astronomical objects. AlH 2 OH can form in the gas phase via a downhill pathway, and the present, high-level quantum chemical study shows that this molecule exhibits bright infrared features for anharmonic fundamentals in regions above and below that associated with polycyclic aromatic hydrocarbons. AlH 2 OH along with HMgOH, HMgNH 2 , and AlH 2 NH 2 are also polar with AlH 2 OH having a 1.22 D dipole moment. AlH 2 OH and likely HMgOH have nearly unhindered motion of the hydroxyl group but are still strongly bonded. This could assist in gas phase synthesis, where aluminum oxide and magnesium oxide minerals likely begin their formation stages with AlH 2 OH and HMgOH. This work provides the spectral data necessary to classify these molecules such that observations as to the buildup of nanoclusters from small molecules can possibly be confirmed. 
    more » « less
  3. We report how the binary HNO 3 (H 2 O) interaction is modified upon complexation with a nearby Cs + ion. Isomer-selective IR photodissociation spectra of the D 2 -tagged, ternary Cs + (HNO 3 )H 2 O cation confirms that two structural isomers are generated in the cryogenic ion source. In one of these, both HNO 3 and H 2 O are directly coordinated to the ion, while in the other, the water molecule is attached to the OH group of the acid, which in turn binds to Cs + with its –NO 2 group. The acidic OH stretching fundamental in the latter isomer displays a ∼300 cm −1 red-shift relative to that in the neutral H-bonded van der Waals complex, HNO 3 (H 2 O). This behavior is analyzed with the aid of electronic structure calculations and discussed in the context of the increased effective acidity of HNO 3 in the presence of the cation. 
    more » « less
  4. The reactions of thioformaldehyde (H 2 CS) with OH radicals and assisted by a single water molecule have been investigated using high level ab initio quantum chemistry calculations. The H 2 CS + ˙OH reaction can in principle proceed through: (1) abstraction, and (2) addition pathways. The barrier height for the addition reaction in the absence of a catalyst was found to be −0.8 kcal mol −1 , relative to the separated reactants, which has a ∼1.0 kcal mol −1 lower barrier than the abstraction channel. The H 2 CS + ˙OH reaction assisted by a single water molecule reduces the barrier heights significantly for both the addition and abstraction channels, to −5.5 and −6.7 kcal mol −1 respectively, compared to the un-catalyzed H 2 CS + ˙OH reaction. These values suggest that water lowers the barriers by ∼6.0 kcal mol −1 for both reaction paths. The rate constants for the H 2 CS⋯H 2 O + ˙OH and OH⋯H 2 O + H 2 CS bimolecular reaction channels were calculated using Canonical Variational Transition state theory (CVT) in conjunction with the Small Curvature Tunneling (SCT) method over the atmospherically relevant temperatures between 200 and 400 K. Rate constants for the H 2 CS + ˙OH reaction paths for comparison with the H 2 CS + ˙OH + H 2 O reaction in the same temperature range were also computed. The results suggest that the rate of the H 2 CS + ˙OH + H 2 O reaction is slower than that of the H 2 CS + ˙OH reaction by ∼1–4 orders of magnitude in the temperatures between 200 and 400 K. For example, at 300 K, the rates of the H 2 CS + ˙OH + H 2 O and H 2 CS + ˙OH reactions were found to be 2.2 × 10 −8 s −1 and 6.4 × 10 −6 s −1 , respectively, calculated using [OH] = 1.0 × 10 6 molecules cm −3 , and [H 2 O] = 8.2 × 10 17 molecules cm −3 (300 K, RH 100%) atmospheric conditions. Electronic structure calculations on the H 2 C(OH)S˙ product in the presence of 3 O 2 were also performed. The results show that H 2 CS is removed from the atmosphere primarily by reacting with ˙OH and O 2 to form thioformic acid, HO 2 , formaldehyde, and SO 2 as the main end products. 
    more » « less
  5. Context. The detection of a branched alkyl molecule in the high-mass star forming protocluster Sagittarius (Sgr) B2(N) permitted by the advent of the Atacama Large Millimeter/submillimeter Array (ALMA) revealed a new dimension of interstellar chemistry. Astrochemical simulations subsequently predicted that beyond a certain degree of molecular complexity, branched molecules could even dominate over their straight-chain isomers. Aims. More generally, we aim to probe further the presence in the interstellar medium of complex organic molecules with the capacity to exhibit both a normal and iso form, via the attachment of a functional group to either a primary or secondary carbon atom. Methods. We used the imaging spectral line survey ReMoCA performed with ALMA at high angular resolution and the results of a recent spectroscopic study of propanol to search for the iso and normal isomers of this molecule in the hot molecular core Sgr B2(N2). We analyzed the interferometric spectra under the assumption of local thermodynamical equilibrium. We expanded the network of the astrochemical model MAGICKAL to explore the formation routes of propanol and put the observational results in a broader astrochemical context. Results. We report the first interstellar detection of iso-propanol, ¿-C 3 H 7 OH, toward a position of Sgr B2(N2) that shows narrow linewidths. We also report the first secure detection of the normal isomer of propanol, n-C 3 H 7 OH, in a hot core. Iso-propanol is found to be nearly as abundant as normal-propanol, with an abundance ratio of 0.6 which is similar to the ratio of 0.4 that we obtained previously for iso- and normal-propyl cyanide in Sgr B2(N2) at lower angular resolution with our previous ALMA survey, EMoCA. The observational results are in good agreement with the outcomes of our astrochemical models, which indicate that the OH-radical addition to propylene in dust-grain ice mantles, driven by water photodissociation, can produce appropriate quantities of normal- and iso-propanol. The normal-to-iso ratio in Sgr B2(N2) may be a direct inheritance of the branching ratio of this reaction process. Conclusions. The detection of normal- and iso-propanol and their ratio indicate that the modest preference for the normal form of propyl cyanide determined previously may be a more general feature among similarly sized interstellar molecules. Detecting other pairs of interstellar organic molecules with a functional group attached either to a primary or secondary carbon may help in pinning down the processes that dominate in setting their normal-to-iso ratios. Butanol and its isomers would be the next obvious candidates in the alcohol family, but their detection in hot cores will be challenging. 
    more » « less