skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Discriminatively Learning Inverse Optimal Control Models for Predicting Human Intentions
More accurately inferring human intentions/goals can help robots complete collaborative human-robot tasks more safely and efficiently. Bayesian reasoning has become a popular approach for predicting the intention or goal of a partial sequence of actions/controls using a trajectory likelihood model. However, the mismatch between the training objective for these models (maximizing trajectory likelihood) and the application objective (maximizing intention likelihood) can be detrimental. In this paper, we seek to improve the goal prediction of maximum entropy inverse reinforcement learning (MaxEnt IRL) models by training to maximize goal likelihood. We demonstrate the benefits of our method on pointing task goal prediction with multiple possible goals and predicting goal based activities in the Cornell Activity Dataset (CAD-120).  more » « less
Award ID(s):
1652530
PAR ID:
10098122
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International Conference on Autonomous Agents and Multiagent Systems
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Human–robot collaboration (HRC) has become an integral element of many manufacturing and service industries. A fundamental requirement for safe HRC is understanding and predicting human trajectories and intentions, especially when humans and robots operate nearby. Although existing research emphasizes predicting human motions or intentions, a key challenge is predicting both human trajectories and intentions simultaneously. This paper addresses this gap by developing a multi-task learning framework consisting of a bi-long short-term memory-based encoder–decoder architecture that obtains the motion data from both human and robot trajectories as inputs and performs two main tasks simultaneously: human trajectory prediction and human intention prediction. The first task predicts human trajectories by reconstructing the motion sequences, while the second task tests two main approaches for intention prediction: supervised learning, specifically a support vector machine, to predict human intention based on the latent representation, and, an unsupervised learning method, the hidden Markov model, that decodes the latent features for human intention prediction. Four encoder designs are evaluated for feature extraction, including interaction-attention, interaction-pooling, interaction-seq2seq, and seq2seq. The framework is validated through a case study of a desktop disassembly task with robots operating at different speeds. The results include evaluating different encoder designs, analyzing the impact of incorporating robot motion into the encoder, and detailed visualizations. The findings show that the proposed framework can accurately predict human trajectories and intentions. 
    more » « less
  2. Activity recognition is a crucial aspect in smart manufacturing and human-robot collaboration, as robots play a vital role in improving efficiency and safety by accurately recognizing human intentions and proactively assisting with tasks. Current human intention recognition applications only consider the accuracy of recognition but ignore the importance of predicting it in advance. Given human reaching movements, we want to equip the robot with the ability to predict human intent not only with precise recognition but also at an early stage. In this paper, we propose a framework to apply Transformer-based and LSTM-based models to learn motion intentions. Second, based on the observation of distances of human joints along the motion trajectory, we explore how we can use the hidden Markov model to find intent state transitions, i.e., intent uncertainty and intent certainty. Finally, two data types are generated, one for the full data and the other for the length of data before state transitions; both data are evaluated on models to assess the robustness of intention prediction. We conducted experiments in a manufacturing workspace where the experimenter reaches multiple scattered targets and further this experimental scenario was designed to examine how intents differ, but motions are only slightly different. The proposed models were then evaluated with experimental data, and further performance comparisons were made between models and between different intents. Finally, early predictions were validated to be better than using full-length data. 
    more » « less
  3. Sampling-based motion planning (SBMP) is a major trajectory planning approach in autonomous driving given its high efficiency in practice. As the core of SBMP schemes, sampling strategy holds the key to whether a smooth and collision-free trajectory can be found in real-time. Although some bias sampling strategies have been explored in the literature to accelerate SBMP, the trajectory generated under existing bias sampling strategies may lead to sharp lane changing. To address this issue, we propose a new learning framework for SBMP. Specifically, we develop a novel automatic labeling scheme and a 2-Stage prediction model to improve the accuracy in predicting the intention of surrounding vehicles. We then develop an imitation learning scheme to generate sample points based on the experience of human drivers. Using the prediction results, we design a new bias sampling strategy to accelerate the SBMP algorithm by strategically selecting necessary sample points that can generate a smooth and collision-free trajectory and avoid sharp lane changing. Data-driven experiments show that the proposed sampling strategy outperforms existing sampling strategies, in terms of the computing time, traveling time, and smoothness of the trajectory. The results also show that our scheme is even better than human drivers. 
    more » « less
  4. Researchers in human–robot collaboration have extensively studied methods for inferring human intentions and predicting their actions, as this is an important precursor for robots to provide useful assistance. We review contemporary methods for intention inference and human activity prediction. Our survey finds that intentions and goals are often inferred via Bayesian posterior estimation and Markov decision processes that model internal human states as unobserved variables or represent both agents in a shared probabilistic framework. An alternative approach is to use neural networks and other supervised learning approaches to directly map observable outcomes to intentions and to make predictions about future human activity based on past observations. That said, due to the complexity of human intentions, existing work usually reasons about limited domains, makes unrealistic simplifications about intentions, and is mostly constrained to short-term predictions. This state of the art provides opportunity for future research that could include more nuanced models of intents, reason over longer horizons, and account for the human tendency to adapt. 
    more » « less
  5. Abstract Human-robot collaboration (HRC) has become an integral element of many industries, including manufacturing. A fundamental requirement for safe HRC is to understand and predict human intentions and trajectories, especially when humans and robots operate in close proximity. However, predicting both human intention and trajectory components simultaneously remains a research gap. In this paper, we have developed a multi-task learning (MTL) framework designed for HRC, which processes motion data from both human and robot trajectories. The first task predicts human trajectories, focusing on reconstructing the motion sequences. The second task employs supervised learning, specifically a Support Vector Machine (SVM), to predict human intention based on the latent representation. In addition, an unsupervised learning method, Hidden Markov Model (HMM), is utilized for human intention prediction that offers a different approach to decoding the latent features. The proposed framework uses MTL to understand human behavior in complex manufacturing environments. The novelty of the work includes the use of a latent representation to capture temporal dynamics in human motion sequences and a comparative analysis of various encoder architectures. We validate our framework through a case study focused on a HRC disassembly desktop task. The findings confirm the system’s capability to accurately predict both human intentions and trajectories. 
    more » « less