skip to main content


Title: Active Learning for Probabilistic Structured Prediction of Cuts and Matchings
Active learning methods, like uncertainty sampling, combined with probabilistic prediction techniques have achieved success in various problems like image classification and text classification. For more complex multivariate prediction tasks, the relationships between labels play an important role in designing structured classifiers with better performance. However, computational time complexity limits prevalent probabilistic methods from effectively supporting active learning. Specifically, while non-probabilistic methods based on structured support vector ma-chines can be tractably applied to predicting cuts and bipartite matchings, conditional random fields are intractable for these structures. We propose an adversarial approach for active learning with structured prediction domains that is tractable for cuts and matching. We evaluate this approach algorithmically in two important structured prediction problems: multi-label classification and object tracking in videos. We demonstrate better accuracy and computational efficiency for our proposed method.  more » « less
Award ID(s):
1652530
NSF-PAR ID:
10098123
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Conference on Machine Learning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many important structured prediction problems, including learning to rank items, correspondence-based natural language processing, and multi-object tracking, can be formulated as weighted bipartite matching optimizations. Existing structured prediction approaches have significant drawbacks when applied under the constraints of perfect bipartite matchings. Exponential family probabilistic models, such as the conditional random field (CRF), provide statistical consistency guarantees, but suffer computationally from the need to compute the normalization term of its distribution over matchings, which is a #P-hard matrix permanent computation. In contrast, the structured support vector machine (SSVM) provides computational efficiency, but lacks Fisher consistency, meaning that there are distributions of data for which it cannot learn the optimal matching even under ideal learning conditions (i.e., given the true distribution and selecting from all measurable potential functions). We propose adversarial bipartite matching to avoid both of these limitations. We develop this approach algorithmically, establish its computational efficiency and Fisher consistency properties, and apply it to matching problems that demonstrate its empirical benefits 
    more » « less
  2. In recent years, there is a growing need to train machine learning models on a huge volume of data. Therefore, designing efficient distributed optimization algorithms for empirical risk minimization (ERM) has become an active and challenging research topic. In this paper, we propose a flexible framework for distributed ERM training through solving the dual problem, which provides a unified description and comparison of existing methods. Our approach requires only approximate solutions of the sub-problems involved in the optimization process, and is versatile to be applied on many large-scale machine learning problems including classification, regression, and structured prediction. We show that our framework enjoys global linear convergence for a broad class of non-strongly-convex problems, and some specific choices of the sub-problems can even achieve much faster convergence than existing approaches by a refined analysis. This improved convergence rate is also reflected in the superior empirical performance of our method. 
    more » « less
  3. Abstract

    Communicating and interpreting uncertainty in ecological model predictions is notoriously challenging, motivating the need for new educational tools, which introduce ecology students to core concepts in uncertainty communication. Ecological forecasting, an emerging approach to estimate future states of ecological systems with uncertainty, provides a relevant and engaging framework for introducing uncertainty communication to undergraduate students, as forecasts can be used as decision support tools for addressing real‐world ecological problems and are inherently uncertain. To provide critical training on uncertainty communication and introduce undergraduate students to the use of ecological forecasts for guiding decision‐making, we developed a hands‐on teaching module within the Macrosystems Environmental Data‐Driven Inquiry and Exploration (EDDIE;MacrosystemsEDDIE.org) educational program. Our module used an active learning approach by embedding forecasting activities in an R Shiny application to engage ecology students in introductory data science, ecological modeling, and forecasting concepts without needing advanced computational or programming skills. Pre‐ and post‐module assessment data from more than 250 undergraduate students enrolled in ecology, freshwater ecology, and zoology courses indicate that the module significantly increased students' ability to interpret forecast visualizations with uncertainty, identify different ways to communicate forecast uncertainty for diverse users, and correctly define ecological forecasting terms. Specifically, students were more likely to describe visual, numeric, and probabilistic methods of uncertainty communication following module completion. Students were also able to identify more benefits of ecological forecasting following module completion, with the key benefits of using forecasts for prediction and decision‐making most commonly described. These results show promise for introducing ecological model uncertainty, data visualizations, and forecasting into undergraduate ecology curricula via software‐based learning, which can increase students' ability to engage and understand complex ecological concepts.

     
    more » « less
  4. In many structured prediction problems, complex relationships between variables are compactly defined using graphical structures. The most prevalent graphical prediction methods---probabilistic graphical models and large margin methods---have their own distinct strengths but also possess significant drawbacks. Conditional random fields (CRFs) are Fisher consistent, but they do not permit integration of customized loss metrics into their learning process. Large-margin models, such as structured support vector machines (SSVMs), have the flexibility to incorporate customized loss metrics, but lack Fisher consistency guarantees. We present adversarial graphical models (AGM), a distributionally robust approach for constructing a predictor that performs robustly for a class of data distributions defined using a graphical structure. Our approach enjoys both the flexibility of incorporating customized loss metrics into its design as well as the statistical guarantee of Fisher consistency. We present exact learning and prediction algorithms for AGM with time complexity similar to existing graphical models and show the practical benefits of our approach with experiments. 
    more » « less
  5. Abstract Purpose Social media users share their ideas, thoughts, and emotions with other users. However, it is not clear how online users would respond to new research outcomes. This study aims to predict the nature of the emotions expressed by Twitter users toward scientific publications. Additionally, we investigate what features of the research articles help in such prediction. Identifying the sentiments of research articles on social media will help scientists gauge a new societal impact of their research articles. Design/methodology/approach Several tools are used for sentiment analysis, so we applied five sentiment analysis tools to check which are suitable for capturing a tweet's sentiment value and decided to use NLTK VADER and TextBlob. We segregated the sentiment value into negative, positive, and neutral. We measure the mean and median of tweets’ sentiment value for research articles with more than one tweet. We next built machine learning models to predict the sentiments of tweets related to scientific publications and investigated the essential features that controlled the prediction models. Findings We found that the most important feature in all the models was the sentiment of the research article title followed by the author count. We observed that the tree-based models performed better than other classification models, with Random Forest achieving 89% accuracy for binary classification and 73% accuracy for three-label classification. Research limitations In this research, we used state-of-the-art sentiment analysis libraries. However, these libraries might vary at times in their sentiment prediction behavior. Tweet sentiment may be influenced by a multitude of circumstances and is not always immediately tied to the paper's details. In the future, we intend to broaden the scope of our research by employing word2vec models. Practical implications Many studies have focused on understanding the impact of science on scientists or how science communicators can improve their outcomes. Research in this area has relied on fewer and more limited measures, such as citations and user studies with small datasets. There is currently a critical need to find novel methods to quantify and evaluate the broader impact of research. This study will help scientists better comprehend the emotional impact of their work. Additionally, the value of understanding the public's interest and reactions helps science communicators identify effective ways to engage with the public and build positive connections between scientific communities and the public. Originality/value This study will extend work on public engagement with science, sociology of science, and computational social science. It will enable researchers to identify areas in which there is a gap between public and expert understanding and provide strategies by which this gap can be bridged. 
    more » « less