skip to main content


Title: Cu(II) EPR Reveals Two Distinct Binding Sites and Oligomerization of Innate Immune Protein Calgranulin C
S100A12 or Calgranulin C is a homodimeric antimicrobial protein of the S100 family of EF-hand calcium-modulated proteins. S100A12 is involved in many diseases like inflammation, tumor invasion, cancer and neurological disorders like Alzheimer’s disease. The binding of transition metal ions to the protein is important as the sequestering of the metal ion induces conformational changes in the protein, inhibiting the growth of various pathogenic microorganisms. In this work, we probe the Cu(II) binding properties of Calgranulin C. We demonstrate that the two Cu(II) binding sites in Calgranulin C show different coordination environments in solution. Electron spin resonance (ESR) spectra of Cu(II)-bound protein clearly show two distinct components at higher Cu(II):protein ratios, which is indicative of the two different binding environments for the Cu(II) ions. The g|| and A|| values are also different for the two components, indicating that the number of directly coordinated nitrogens in each site differs. Furthermore, we perform Continuous Wave (CW)-titrations to obtain the binding affinity of the Ca(II)-loaded protein to Cu2+ ions. We observe a positive cooperativity in binding of the two Cu(II) ions. In order to further probe the Cu2+ coordination, we also perform Electron Spin Echo Envelope Modulation (ESEEM) experiment. We perform ESEEM at two different fields where one Cu(II) binding site dominates over the other. At both sites we see distinct signatures of Cu(II)-histidine coordination. However, we clearly see that the ESEEM spectra corresponding to the two Cu2+ binding sites are significantly different. There is clear change in the intensity of the double quantum (DQ) peak with respect to the nuclear quadrupole interaction (NQI) peak at the two different fields. Furthermore, ESEEM along with Hyperfine Sublevel Correlation (HYSCORE) show that only one of the two Cu(II) binding sites has backbone coordination, confirming our previous observation. Finally, we perform Double Electron Electron Resonance (DEER) spectroscopy to probe if the difference in binding environment is due to the Cu(II) binding to different sites in the protein. We obtain a distance distribution with a sharp peak at ~ 3 nm and a broad peak at ~ 4 nm. The shorter distance agrees with the Cu(II)-Cu(II) distance expected for a dimer from the crystal structure. The longer distance is consistent with the Cu(II)-Cu(II) distance when oligomerization occurs.  more » « less
Award ID(s):
1725678 1613007
NSF-PAR ID:
10098379
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Applied magnetic resonance
Volume:
49
ISSN:
0937-9347
Page Range / eLocation ID:
1299-1311
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Combining rigid Cu( ii ) labels and pulsed-EPR techniques enables distance constraint measurements that are incisive probes of protein structure and dynamics. However, the labels can lead to a dipolar signal that is biased by the relative orientation of the two spins, which is typically unknown a priori in a bilabeled protein. This effect, dubbed orientational selectivity, becomes a bottleneck in measuring distances. This phenomenon also applies to other pulsed-EPR techniques that probe electron–nucleus interactions. In this work, we dissect orientational selectivity by generating an in silico sample of Cu( ii )-labeled proteins to evaluate pulse excitation in the context of double electron–electron resonance (DEER) at Q-band frequencies. This approach enables the observation of the contribution of each protein orientation to the dipolar signal, which provides direct insights into optimizing acquisition schemes to mitigate orientational effects. Furthermore, we incorporate the excitation profile of realistic pulses to identify the excited spins. With this method, we show that rectangular pulses, despite their imperfect inversion capability, can sample similar spin orientations as other sophisticated pulses with the same bandwidth. Additionally, we reveal that the efficiency of exciting spin-pairs in DEER depends on the frequency offset of two pulses used in the experiment and the relative orientation of the two spins. Therefore, we systematically examine the frequency offset of the two pulses used in this double resonance experiment to determine the optimal frequency offset for optimal distance measurements. This procedure leads to a protocol where two measurements are sufficient to acquire orientational-independent DEER at Q-band. Notably, this procedure is feasible with any commercial pulsed-EPR spectrometer. Furthermore, we experimentally validate the computational results using DEER experiments on two different proteins. Finally, we show that increasing the amplitude of the rectangular pulse can increase the efficiency of DEER experiments by almost threefold. Overall, this work provides an attractive new approach for analyzing pulsed-EPR spectroscopy to obtain microscopic nuances that cannot be easily discerned from analytical or numerical calculations. 
    more » « less
  2. Electron paramagnetic resonance (EPR) based distance measurements have been exploited to measure protein–protein docking, protein–DNA interactions, substrate binding and metal coordination sites. Here, we use EPR to locate a native paramagnetic metal binding site in a protein with less than 2 Å resolution. We employ a rigid Cu 2+ binding motif, the double histidine (dHis) motif, in conjunction with double electron electron resonance (DEER) spectroscopy. Specifically, we utilize a multilateration approach to elucidate the native Cu 2+ binding site in the immunoglobulin binding domain of protein G. Notably, multilateration performed with the dHis motif required only the minimum number of four distance constraints, whereas comparable studies using flexible nitroxide-based spin labels require many more for similar precision. This methodology demonstrates a significant increase in the efficiency of structural determinations via EPR distance measurements using the dHis motif. 
    more » « less
  3. Abstract

    Site‐specific dynamics in proteins are at the heart of protein function. While electron paramagnetic resonance (EPR) has potential to measure dynamics in large protein complexes, the reliance on flexible nitroxide labels is limitating especially for the accurate measurement of site‐specific β‐sheet dynamics. Here, we employed EPR spectroscopy to measure site‐specific dynamics across the surface of a protein, GB1. Through the use of the double Histidine (dHis) motif, which enables labeling with a Cu(II) – nitrilotriacetic acid (NTA) complex, dynamics information was obtained for both α‐helical and β‐sheet sites. Spectral simulations of the resulting CW‐EPR report unique site‐specific fluctuations across the surface of GB1. Additionally, we performed molecular dynamics (MD) simulations to complement the EPR data. The dynamics observed from MD agree with the EPR results. Furthermore, we observe small changes ingǁvalues for different sites, which may be due to small differences in coordination geometry and/or local electrostatics of the site. Taken together, this work expands the utility of Cu(II)NTA‐based EPR measurements to probe information beyond distance constraints.

     
    more » « less
  4. Abstract

    Pulsed dipolar EPR spectroscopy (PDS) in combination with site‐directed spin labeling is a powerful tool in structural biology. However, the commonly used spin labels are conjugated to biomolecules via rather long and flexible linkers, which hampers the translation of distance distributions into biomolecular conformations. In contrast, the spin label copper(II)‐nitrilotriacetic acid [Cu2+(NTA)] bound to two histidines (dHis) is rigid and yields narrow distance distributions, which can be more easily translated into biomolecular conformations. Here, we use this label on the 71 kDaYersiniaouter protein O (YopO) to decipher whether a previously experimentally observed bimodal distance distribution is due to two conformations of the biomolecule or of the flexible spin labels. Two different PDS experiments, that is, pulsed electron–electron double resonance (PELDOR aka DEER) and relaxation‐induced dipolar modulation enhancement (RIDME), yield unimodal distance distribution with the dHis‐Cu2+(NTA) motif; this result suggests that the α‐helical backbone of YopO adopts a single conformation in frozen solution. In addition, we show that the Cu2+(NTA) label preferentially binds to the target double histidine (dHis) sites even in the presence of 22 competing native histidine residues. Our results therefore suggest that the generation of a His‐null background is not required for this spin labeling methodology. Together these results highlight the value of the dHis‐Cu2+(NTA) motif in PDS experiments.

     
    more » « less
  5. Spin labels attached to two residues of a protein chain have less conformational flexibility than those attached to a single residue and thus lead to a narrower spatialdistribution of the unpaired electron. The case of Cu(II) labels based on the double-histidine (dHis) motif is of particular interest, as it combines the advantage of precise localization of the unpaired electron with a labelling scheme orthogonal to the more common cysteine-based labelling. Here, we introduce an approach for in silico spin labelling of a protein by dHis motifs and Cu(II) complexes of iminodiacetic acid or nitrilotriacetic acid. We discuss a computerized scan for native histidine pairs that might be prone to bind such Cu(II) complexes and spin-labelling site pair scans that can identify suitable double mutants for labelling. Predicted distance distributions between two Cu(II) labels are compared to experimental distance distributions. We also test the hypothesis that elastic network modelling of conformational transitions with Cu2(II)- dHis labels can provide more accurate structural models than with nitroxide labels. 
    more » « less