skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Photovoltages and hot electrons in plasmonic nanogaps
In metal nanostructures under illumination, multiple different processes can drive current flow, and in an opencircuit configuration some of these processes lead to the production of open-circuit photovoltages. Structures that have plasmonic resonances at the illumination wavelength can have enhanced photovoltage response, due to both increased interactions with the incident radiation field, and processes made possible through the dynamics of the plasmon excitations themselves. Here we review photovoltage response driven by thermoelectric effects in continuous metal nanowires and photovoltage response driven by hot electron production and tunneling. We discuss the prospects for enhancing and quantifying hot electron generation and response via the combination of local plasmonic resonances and propagating surface plasmon polaritons.  more » « less
Award ID(s):
1704625
PAR ID:
10098403
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Quantum Sensing and Nano Electronics and Photonics XV;
Volume:
10540
Page Range / eLocation ID:
26
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Plasmonic hot‐electron‐assisted control of emission intensities and dynamics of CdSe/ZnS and infrared PbS quantum dots are studied. This is done by exploring the impact of Au/Si and Ag/Si Schottky junctions on the decay rates of such quantum dots when these junctions are placed in close vicinity of a Si/Al oxide charge barrier, forming metal‐oxide plasmonic metafilms. Such structures are used to investigate how metal‐dependent distributions of hot electrons and their capture via Schottky junctions can lead to suppression of the defect environments of quantum dots, offering a novel platform wherein off‐resonant (non‐Purcell) plasmonic processes are used to control exciton dynamics. These results show that Ag metafilms can enhance the emission of CdSe/ZnS quantum dots and elongate their lifetimes more than Au metafilms. This highlights the more efficient nature of Ag/Si Schottky junctions for hot electron excitation and capture. These results also show that such junctions can significantly suppress the nonradiative decay rates of PbS quantum dots at frequencies far from the plasmon resonances. These results demonstrate a field‐effect passivation of quantum dot defects via entrapment of hot electrons and control of emission intensities and dynamics of quantum dots via the nearly frequency‐independent electrostatic field of such electrons. 
    more » « less
  2. Plasmonic modes confined to metallic nanostructures at the atomic and molecular scale push the boundaries of light–matter interactions. Within these extreme plasmonic structures of ultrathin nanogaps, coupled nanoparticles, and tunnelling junctions, new physical phenomena arise when plasmon resonances couple to electronic, exitonic, or vibrational excitations, as well as the efficient generation of non-radiative hot carriers. This review surveys the latest experimental and theoretical advances in the regime of extreme nano-plasmonics, with an emphasis on plasmon-induced hot carriers, strong coupling effects, and electrically driven processes at the molecular scale. We will also highlight related nanophotonic and optoelectronic applications including plasmon-enhanced molecular light sources, photocatalysis, photodetection, and strong coupling with low dimensional materials. 
    more » « less
  3. null (Ed.)
    Optically excited plasmonic nanostructures exhibit unique capabilities to catalyze interfacial chemical transformations of molecules adsorbed on their surfaces in a regioselective manner through anomalous reaction pathways that are inaccessible under thermal conditions. The mechanistic complexity of plasmon-driven photocatalysis is intimately tied to a series of photophysical and photochemical processes associated with the radiative and non-radiative decay of localized plasmon resonances in metallic nanostructures. Plasmon-enhanced Raman spectroscopy combines ultrahigh detection sensitivity with unique time-resolving and molecular finger-printing capabilities, ideal for detailed kinetic and mechanistic studies of photocatalytic interfacial transformations of molecular adsorbates residing in the plasmonic hot spots. Through systematic case studies of several representative reactions, we demonstrate how plasmon-enhanced Raman spectroscopy can be judiciously utilized as a unique in situ spectroscopic tool to fine-resolve the detailed molecule-transforming processes on the surfaces of optically excited plasmonic nanostructures in real time during the photocatalytic reactions. We further epitomize the mechanistic insights gained from in situ plasmon-enhanced Raman spectroscopic measurements into several central materials design principles that can be employed to guide the rational optimization of the photocatalyst structures and the nanostructure-molecule interfaces for plasmon-mediated surface chemistry. 
    more » « less
  4. Extreme light confinement in plasmonic nanosystems enables novel applications in photonics, sensor technology, energy harvesting, biology, and quantum information processing. Fullerenes represent an extreme case for nanoplasmonics: They are subnanometer carbon-based molecules showing high-energy and ultrabroad plasmon resonances; however, the fundamental mechanisms driving the plasmonic response and the corresponding collective electron dynamics are still elusive. Here, we uncover the dominant role of electron correlations in the dynamics of the giant plasmon resonance (GPR) of the subnanometer system C60by using attosecond photoemission chronoscopy. We find a characteristic photoemission delay of up to about 300 attoseconds that is purely induced by coherent large-scale electron correlations in the plasmonic potential. These results provide insights into the nature of the plasmon resonances in subnanometer systems and open perspectives for advancing nanoplasmonic applications. 
    more » « less
  5. Plasmonic materials are promising photocatalysts as they are well suited to convert light into hot carriers and heat. Hot electron transfer is suggested as the driving force in many plasmon-driven reactions. However, to date, there are no direct molecular measures of the rate and yield of plasmon-to-molecule electron transfer or energy of these electrons on the timescale of plasmon decay. Here, we use ultrafast and spectroelectrochemical surface-enhanced Raman spectroscopy to quantify electron transfer from a plasmonic substrate to adsorbed methyl viologen molecules. We observe a reduction yield of 2.4 to 3.5% on the picosecond timescale, with plasmon-induced potentials ranging from 3.1 to 4.5 mV. Excitingly, some of these reduced species are stabilized and persist for tens of minutes. This work provides concrete metrics toward optimizing material–molecule interactions for efficient plasmon-driven photocatalysis. 
    more » « less