skip to main content


Title: Water Diffusion Measurements of Single Charged Aerosol Using H 2 O/D 2 O Isotope Exchange and Raman Spectroscopy in an Electrodynamic Balance
Sea spray aerosols contain a large array of organic compounds that contribute to high viscosities at low relative humidity and temperature thereby slowing translational diffusion of water. The Stokes-Einstein equation describes how viscosity is inversely correlated with the translational diffusion coefficient of the diffusing species. However, recent studies indicate the Stokes-Einstein equation breaks down at high viscosities achieved in the particle phase (>10 12 Pa·s), underestimating the predicted water diffusion coefficient by orders of magnitude and revealing the need for directly studying the diffusion of water in single aerosol. A new method is reported for measuring the water diffusion coefficient in single suspended charged sucrose-water microdroplets in the 30-60 micron diameter range. The translational water diffusion coefficient is quantified using H 2 O/D 2 O isotope exchange technique between 26-54% relative humidity (RH) with a recently developed mobile electrodynamic balance apparatus. The results are in good agreement with literature, particularly the Vignes-type parameterization from experiments using isotope exchange and optical tweezers. This mobile electrodynamic balance will allow future studies of atmospherically relevant chemical systems, including field studies.  more » « less
Award ID(s):
1801971
NSF-PAR ID:
10098580
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
ISSN:
1463-9076
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The conformational transition of a fluorinated amphiphilic dendrimer is monitored by the1H signal from water, alongside the19F signal from the dendrimer. High‐field NMR data (chemical shiftδ, self‐diffusion coefficientD, longitudinal relaxation rateR1, and transverse relaxation rateR2) for both dendrimer (19F) and water (1H) match each other in detecting the conformational transition. Among all parameters for both nuclei, the water proton transverse‐relaxation rateR2(1H2O) displays the highest relative scale of change upon conformational transition of the dendrimer. Hydrogen/deuterium‐exchange mass spectrometry reveals that the compact form of the dendrimer has slower proton exchange with water than the extended form. This result suggests that the sensitivity ofR2(1H2O) toward dendrimer conformation originates, at least partially, from the difference in proton exchange efficiency between different dendrimer conformations. Finally, we also demonstrated that this conformational transition could be conveniently monitored using a low‐field benchtop NMR spectrometer viaR2(1H2O). The1H2O signal thus offers a simple way to monitor structural changes of macromolecules using benchtop time‐domain NMR.

     
    more » « less
  2. Abstract

    Rotational-translational decoupling, in which translational motion is apparently enhanced over rotational motion in violation of Stokes-Einstein (SE) and Debye-Stokes-Einstein (DSE) predictions, has been observed in materials near their glass transition temperatures (Tg). This has been posited to result from ensemble averaging in the context of dynamic heterogeneity. In this work, ensemble and single molecule experiments are performed in parallel on a fluorescent probe in high molecular weight polystyrene near its Tg. Ensemble results show decoupling onset at approximately 1.15Tg, increasing to over three orders of magnitude at Tg. Single molecule measurements also show a high degree of decoupling, with typical molecules at Tgshowing translational diffusion coefficients nearly 400 times higher than expected from SE/DSE predictions. At the single molecule level, higher degree of breakdown is associated with particularly mobile molecules and anisotropic trajectories, providing support for anomalous diffusion as a critical driver of rotational-translational decoupling and SE/DSE breakdown.

     
    more » « less
  3. We examined the reactive uptake of dinitrogen pentoxide (N 2 O 5 ) to authentic biomass-burning aerosol (BBA) using a small chamber reservoir in combination with an entrained aerosol flow tube. BBA was generated from four different fuel types and the reactivity of N 2 O 5 was probed from 30 to 70% relative humidity (RH). The N 2 O 5 reactive uptake coefficient, γ (N 2 O 5 ), depended upon RH, fuel type, and to a lesser degree on aerosol chloride mass fractions. The γ (N 2 O 5 ) ranged from 2.0 (±0.4) ×10 −3 on black needlerush derived BBA at 30% RH to 6.0 (±0.6) ×10 −3 on wiregrass derived BBA at 65% RH. Major N 2 O 5 reaction products were observed including gaseous ClNO 2 and HNO 3 and particulate nitrate, and used to create a reactive nitrogen budget. Black needlerush BBA had the most particulate chloride, and the only measured ClNO 2 yield > 1%. The ClNO 2 yield on black needlerush decayed from an initial value of ∼100% to ∼30% over the course of the burn experiment, suggesting a depletion of BBA chloride over time. Black needlerush was also the only fuel for which the reactive nitrogen budget indicated other N-containing products were generated. Generally, the results suggest limited chloride availability for heterogeneous reaction for BBA in the RH range probed here, including BBA with chloride mass fractions on the higher end of previously reported values (∼17–34%). Though less than fresh sea spray aerosol, ∼50%. We use these measured quantities to discuss the implications for nocturnal aerosol nitrate formation, the chemical fate of N 2 O 5 (g), and the availability of particulate chloride for activation in biomass burning plumes. 
    more » « less
  4. Abstract

    The accuracy of a differential thermal analysis (DTA) technique for predicting the temperature range of significant nucleation is examined in a BaO∙2SiO2glass by iterative numerical calculations. The numerical model takes account of time‐dependent nucleation, finite particle size, size‐dependent crystal growth rates, and surface crystallization. The calculations were made using the classical and, for the first time, the diffuse interface theories of nucleation. The results of the calculations are in agreement with experimental measurements, demonstrating the validity of the DTA technique. They show that this is independent of the DTA scan rate used and that surface crystallization has a negligible effect for the glass particle sizes studied. A breakdown of the Stokes‐Einstein relation between viscosity and the diffusion coefficient is demonstrated for low temperatures, near the maximum nucleation rate. However, it is shown that accurate values for the diffusion coefficient can be obtained from the induction time for nucleation and the growth velocity in this temperature range.

     
    more » « less
  5. Abstract

    The isotopic composition of precipitation (δ18O, δ2H, and δ17O) is affected by evaporation and exchange as hydrometeors descend. These processes can significantly alter the isotopic ratio of precipitation relative to its initial condensation state in the cloud yet are exceedingly difficult to study in situ. The most widely utilized model for droplet‐atmosphere exchange was derived from controlled experiments where droplets were suspended by forced air in a narrow glass tube‐ a design that manipulated the structure of the boundary layer around the droplet. Here, we provide a novel experimental test of atmosphere‐hydrometeor isotopic exchange using the mechanism of acoustic levitation, where sound waves are projected vertically to levitate droplets in free‐flowing ambient air. We present results from a series of droplet levitation experiments where the droplets' surface temperatures were measured by a thermal camera and the background atmospheric isotope concentration was measured via cavity‐ringdown spectroscopy, providing a high degree of constraint on the fractionation conditions. We show that isotope enrichment of the suspended droplets met first order expectations based on existing models. However, to account for the slope of δ18O versus δ2H (i.e., the meteoric water line) and deuterium excess of the droplets as they evolved, we had to modify the existing model for droplet‐atmosphere exchange to account for the fact that some portion of the evaporative flux from the droplet remained present in the boundary layer around the droplet leading to an evolving feedback between droplet and the atmosphere‐that is, a quasi closed‐system effect. The isotopic enrichment of the boundary layer surrounding the droplet as a consequence of the closed‐system dynamics, drives more rapid δ18O isotope enrichment relative to δ2H of the droplet compared to what is predicted using an open system model. Although these were controlled experiments, they illustrate important dynamics regarding the isotopic signature of feedbacks between droplet evaporation and atmospheric humidity.

     
    more » « less