skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Photonics technician education in Michigan: an update
The only two-year program to educate photonics technicians in Michigan was introduced at Baker College in 2013. Graduates are employed with photonics companies in the state, fulfilling the primary mission of the program. The program curriculum was revised for this academic year with more curriculum enhancements planned, including photonics applications in autonomous vehicles such as LIDAR, and the use of high power lasers in manufacturing. Efforts to expand the program and create a more sustainable pipeline of students are under way with continued support from the National Science Foundation. These include the introduction of photonics content in Career and Technical Education high school programs. The paper will describe the updated program curriculum, the resources available in the Optics and Photonics Lab, and the collaborative and outreach activities with high schools in the state.  more » « less
Award ID(s):
1700599
PAR ID:
10098790
Author(s) / Creator(s):
Date Published:
Journal Name:
SPIE Proceedings Volume 10741, Optics Education and Outreach V
Volume:
10741
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Frank, Brian W.; Jones, Dyan; Ryan, Qing X. (Ed.)
    Science educators agree that computation is a growing necessity for curricula at many levels. One program looking to bring computation into high school classes is ICSAM (Integrating Computation in Science Across Michigan), an NSF-funded program at Michigan State University. ICSAM is a year-round program that brings a community of teachers together to help them equitably add computation into their physics curricula. While in the ICSAM program, data is collected from participating teachers through interviews, surveys, classroom videos, and more. In this paper, we examine a case study of a very active participant who fits the mold of a typical high school physics teacher. We utilize the lenses of critical pedagogical discourses and contextual discourses to explore the decision-making behind the adoption of various resources by this teacher during their time with ICSAM. The ways in which this teacher integrated computation in their classroom, along with the nuanced challenges that they faced, may be able to help inform other teachers, professional development providers, and curriculum development of the nature of implementing computation into high school curricula. This work was supported by the National Science Foundation (DRL-1741575) and Michigan State University's Lappan-Philips Foundation. 
    more » « less
  2. The Greater Equity, Access, and Readiness for Engineering and Technology (GEARSET) Program, an NSF funded S-STEM program was developed GEARSET to address several institutional needs at the university. The original target population for the GEARSET program was identified as a subset of the students who applied to the College of Engineering and do not meet all the admissions requirements and are admitted to an Exploratory Studies major in the university’s University College. Historical data indicates that approximately 170 students per year with a high school GPA of 3.00 or higher are admitted to Exploratory Studies because they do not meet the College of Engineering admissions criteria. Of these, roughly 78 students remain at the University after one year. Of those 78, only about 45 students per year transition to college of Engineering majors by the end of their first year. These numbers do not accurately reflect the ability of these students, but rather are due in part to curricular bottlenecks, lack of institutional support, and lack of significant relevant exposure of students to material meant to engage their engineering future selves. This data motivated the creation of the GEARSET program. Specifically, the program was designed to 1. Increase recruitment, retention, student success, and transfer rates into engineering of students who are not admitted directly to engineering but who are instead admitted to the university’s University College. 2. Increase meaningfulness and engineering relevance of pre-engineering curriculum. 3. Increase diversity within the student population of various engineering departments in the College of Engineering. 4. Remove bottlenecks in curriculum and improve access to engineering and decrease length to degree. A key aspect of the program is a curated curriculum. All students in the GEARSET program are enrolled in multiple courses historically proven to promote better understanding of the key areas of Math, Chemistry and Physics needed to be successful engineers. All students have access to advisors within the COE to help them better understand the programs, curriculum and professional outcomes of each discipline of Engineering. Another key component of the program is that low income students in the GEARSET cohort who successfully transfer to a major within the COE after one year receive scholarship support. Here we describe the Program, the results to date, and the impact of the recent global pandemic and the subsequent transition to test optional admissions criteria on the definition of the GEARSET cohort, program implementation, and student participation. 
    more » « less
  3. Curricular analytics (CA) is a quantitative method that analyzes the sequence of courses (curriculum) that students in an undergraduate academic program must complete to fulfill the requirements of the program. The main hypothesis of CA is that the less complex a curriculum is, the more likely it is that students complete the program. This study compares the curricular complexity of undergraduate physics programs at 60 institutions in the United States. The institutions were divided into three tiers based on national rankings of the physics graduate program, and the means of each tier were compared. No significant difference between the means of each tier was found, indicating that there is not a relationship between program curricular complexity and program ranking. Further analysis focused on the physics, chemistry, and mathematics courses, defined as the core courses of the curriculum. Significant differences in the number of required core courses and the complexity per core course were measured between the tiers; both were measured as large effects. Programs with the highest rankings required fewer core courses while having a higher complexity per core course. These institutions have more strict prerequisite requirements than lower ranking programs. This study also showed complexity was quantitatively related to curricular flexibility operationalized as the number of available eight-semester degree plans. The number of available degree plans exponentially decreased with increasing core complexity per course. Modifications to a curriculum at one institution were analyzed; a similar relationship between the number of available degree plans and increasing complexity per core course was found. Published by the American Physical Society2024 
    more » « less
  4. Between May 25, 2023 and June 21, 2023, we hosted the inaugural four-week High-Performance Computing Summer Institute at Jackson State University. This endeavor was made possible through the support of a three-year NSF CISE-MSI grant. The primary objective of this Summer Institute revolved around the engagement, education, and empowerment of minority and underrepresented students in the realm of High-Performance Computing (HPC) within the field of engineering. Nine undergraduate students with diverse background were recruited to participate in this program.  Throughout the program, we immersed these students in a comprehensive curriculum that covered various critical facets of HPC. This curriculum encompassed hands-on instruction in Linux operating system command-line operations, C programming within the Linux environment, fundamental HPC concepts, parallel computing utilizing the Message Passing Interface (MPI) library, and GPU computing through OpenCL. Additionally, we delved into foundational aspects of fluid mechanics, geometric modeling, mesh generation, flow simulation via our in-house flow solvers, and the visualization of solutions. At the end of the program, every participant was tasked with delivering an oral presentation and submitting a written report encapsulating their acquired knowledge and experiences during the program. We are excited to share a detailed overview of our program's implementation with our audience. This includes insights into our utilization of ChatGPT to enhance C programming learning and our suggestion of the NSF ACCESS resources to gain access to HPC systems. We are proud to announce that the program has achieved remarkable success, as evidenced by the positive feedback we received from the participants. 
    more » « less
  5. null (Ed.)
    In the past decade, reports such as the National Academies' "Engineering in K-12 Education: Understanding the Status and Improving the Prospects" (2009) have discussed the importance of – and challenges of – effectively incorporating engineering concepts into the K-12 curriculum. Multiple reports have echoed and further elaborated on the need to effectively and authentically introduce engineering within K-12; not just to address a perpetual shortage of engineers, but to increase technological literacy within the U.S. The NSF-funded initiative Engineering for US All (E4USA): A National Pilot Program for High School Engineering Course and Database curriculum was intentionally designed ‘for us all;’ in other words, the design is meant to be inclusive and to engage in an examination and exploration of ‘engineering’. The intent behind the ‘for us all’ curriculum is to emphasize the idea of thinking like an engineer, rather than simply to develop more engineers. Therefore, the focus is not on ‘how to become an engineer’ but ‘what is an engineer’ and ‘who is an engineer’. This paper will discuss the design of the first iteration of the curriculum. The initial design was based on the First Year Engineering Classification Scheme, used to classify all possible content found in first-year, multidisciplinary Introduction to Engineering courses in general-admit (non direct-admit) engineering programs. The curriculum provides progressively larger engineering design experiences relating to student fields of interest and real-world problems. Course objectives are broken into four major threads. Each of these threads is woven through seven modules. The threads are: Discovering Engineering, Engineering in Society, Engineering Professional Skills, and Engineering Design. This paper will discuss the design of the first iteration of the curriculum. The initial design was based on the First Year Engineering Classification Scheme, used to classify all possible content found in first-year, multidisciplinary Introduction to Engineering courses in general-admit (non direct-admit) engineering programs. The curriculum provides progressively larger engineering design experiences relating to student fields of interest and real-world problems. Course objectives are broken into four major threads. Each of these threads is woven through seven modules. The threads are: Discovering Engineering, Engineering in Society, Engineering Professional Skills, and Engineering Design. 
    more » « less