skip to main content


Title: ParallelAttentionMechanismsinNeuralMachine Translation
Recent papers in neural machine translation have proposed the strict use of attention mechanisms over previous stan- dards such as recurrent and convolutional neural networks (RNNs and CNNs). We propose that by running traditionally stacked encoding branches from encoder-decoder attention- focused architectures in parallel, that even more sequential operations can be removed from the model and thereby de- crease training time. In particular, we modify the recently published attention-based architecture called Transformer by Google, by replacing sequential attention modules with par- allel ones, reducing the amount of training time and substan- tially improving BLEU scores at the same time. Experiments over the English to German and English to French translation tasks show that our model establishes a new state of the art.  more » « less
Award ID(s):
1659788
NSF-PAR ID:
10098857
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International Conference on Machine Learning Applications
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dual learning has attracted much attention in machine learning, computer vision and natural language processing communities. The core idea of dual learning is to leverage the duality between the primal task (mapping from domain X to domain Y) and dual task (mapping from domain Y to X) to boost the performances of both tasks. Existing dual learning framework forms a system with two agents (one primal model and one dual model) to utilize such duality. In this paper, we extend this framework by introducing multiple primal and dual models, and propose the multi-agent dual learning framework. Experiments on neural machine translation and image translation tasks demonstrate the effectiveness of the new framework. In particular, we set a new record on IWSLT 2014 German-to-English translation with a 35.44 BLEU score, achieve a 31.03 BLEU score on WMT 2014 English-to-German translation with over 2.6 BLEU improvement over the strong Transformer baseline, and set a new record of 49.61 BLEU score on the recent WMT 2018 English-to-German translation. 
    more » « less
  2. Raynal, Ann M. ; Ranney, Kenneth I. (Ed.)
    Most research in technologies for the Deaf community have focused on translation using either video or wearable devices. Sensor-augmented gloves have been reported to yield higher gesture recognition rates than camera-based systems; however, they cannot capture information expressed through head and body movement. Gloves are also intrusive and inhibit users in their pursuit of normal daily life, while cameras can raise concerns over privacy and are ineffective in the dark. In contrast, RF sensors are non-contact, non-invasive and do not reveal private information even if hacked. Although RF sensors are unable to measure facial expressions or hand shapes, which would be required for complete translation, this paper aims to exploit near real-time ASL recognition using RF sensors for the design of smart Deaf spaces. In this way, we hope to enable the Deaf community to benefit from advances in technologies that could generate tangible improvements in their quality of life. More specifically, this paper investigates near real-time implementation of machine learning and deep learning architectures for the purpose of sequential ASL signing recognition. We utilize a 60 GHz RF sensor which transmits a frequency modulation continuous wave (FMWC waveform). RF sensors can acquire a unique source of information that is inaccessible to optical or wearable devices: namely, a visual representation of the kinematic patterns of motion via the micro-Doppler signature. Micro-Doppler refers to frequency modulations that appear about the central Doppler shift, which are caused by rotational or vibrational motions that deviate from principle translational motion. In prior work, we showed that fractal complexity computed from RF data could be used to discriminate signing from daily activities and that RF data could reveal linguistic properties, such as coarticulation. We have also shown that machine learning can be used to discriminate with 99% accuracy the signing of native Deaf ASL users from that of copysigning (or imitation signing) by hearing individuals. Therefore, imitation signing data is not effective for directly training deep models. But, adversarial learning can be used to transform imitation signing to resemble native signing, or, alternatively, physics-aware generative models can be used to synthesize ASL micro-Doppler signatures for training deep neural networks. With such approaches, we have achieved over 90% recognition accuracy of 20 ASL signs. In natural environments, however, near real-time implementations of classification algorithms are required, as well as an ability to process data streams in a continuous and sequential fashion. In this work, we focus on extensions of our prior work towards this aim, and compare the efficacy of various approaches for embedding deep neural networks (DNNs) on platforms such as a Raspberry Pi or Jetson board. We examine methods for optimizing the size and computational complexity of DNNs for embedded micro-Doppler analysis, methods for network compression, and their resulting sequential ASL recognition performance. 
    more » « less
  3. In recent times, sequence-to-sequence (seq2seq) models have gained a lot of popularity and provide stateof-the-art performance in a wide variety of tasks, such as machine translation, headline generation, text summarization, speech-to-text conversion, and image caption generation. The underlying framework for all these models is usually a deep neural network comprising an encoder and a decoder. Although simple encoder–decoder models produce competitive results, many researchers have proposed additional improvements over these seq2seq models, e.g., using an attention-based model over the input, pointer-generation models, and self-attention models. However, such seq2seq models suffer from two common problems: 1) exposure bias and 2) inconsistency between train/test measurement. Recently, a completely novel point of view has emerged in addressing these two problems in seq2seq models, leveraging methods from reinforcement learning (RL). In this survey, we consider seq2seq problems from the RL point of view and provide a formulation combining the power of RL methods in decision-making with seq2seq models that enable remembering long-term memories. We present some of the most recent frameworks that combine the concepts from RL and deep neural networks. Our work aims to provide insights into some of the problems that inherently arise with current approaches and how we can address them with better RL models. We also provide the source code for implementing most of the RL models discussed in this paper to support the complex task of abstractive text summarization and provide some targeted experiments for these RL models, both in terms of performance and training time. 
    more » « less
  4. Beam search optimization (Wiseman and Rush, 2016) resolves many issues in neural machine translation. However, this method lacks principled stopping criteria and does not learn how to stop during training, and the model naturally prefers longer hypotheses during the testing time in practice since they use the raw score instead of the probability-based score. We propose a novel ranking method which enables an optimal beam search stop- ping criteria. We further introduce a structured prediction loss function which penalizes suboptimal finished candidates produced by beam search during training. Experiments of neural machine translation on both synthetic data and real languages (German→English and Chinese→English) demonstrate our pro- posed methods lead to better length and BLEU score. 
    more » « less
  5. null (Ed.)
    This paper presents a policy-driven sequential image augmentation approach for image-related tasks. Our approach applies a sequence of image transformations (e.g., translation, rotation) over a training image, one transformation at a time, with the augmented image from the previous time step treated as the input for the next transformation. This sequential data augmentation substantially improves sample diversity, leading to improved test performance, especially for data-hungry models (e.g., deep neural networks). However, the search for the optimal transformation of each image at each time step of the sequence has high complexity due to its combination nature. To address this challenge, we formulate the search task as a sequential decision process and introduce a deep policy network that learns to produce transformations based on image content. We also develop an iterative algorithm to jointly train a classifier and the policy network in the reinforcement learning setting. The immediate reward of a potential transformation is defined to encourage transformations producing hard samples for the current classifier. At each iteration, we employ the policy network to augment the training dataset, train a classifier with the augmented data, and train the policy net with the aid of the classifier. We apply the above approach to both public image classification benchmarks and a newly collected image dataset for material recognition. Comparisons to alternative augmentation approaches show that our policy-driven approach achieves comparable or improved classification performance while using significantly fewer augmented images. The code is available at https://github.com/Paul-LiPu/rl_autoaug. 
    more » « less