skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Continuous synthesis of elastomeric macroporous microbeads
Macroporous microbeads are synthesized by microfluidic production of silica-loaded polymeric microdroplets followed by porogen removal via selective etching. Microdroplets are produced in a flow-focusing microreactor to ensure monodispersity with uniform porogen loading. Effects of porogen size and polymer network density on the porosity and effective modulus of the microbeads are studied.  more » « less
Award ID(s):
1803428
PAR ID:
10098951
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Reaction Chemistry & Engineering
Volume:
4
Issue:
2
ISSN:
2058-9883
Page Range / eLocation ID:
254 to 260
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite national and international regulations, plastic microbeads are still widely used in personal care and consumer products (PCCPs) as exfoliants and rheological modifiers, causing significant microplastic pollution following use. As a sustainable alternative, microbeads were produced by extrusion of biomass solutions and precipitation into anti-solvent. Despite using novel blends of biodegradable, non-derivatized biomass including cellulose and Kraft lignin, resulting microbeads are within the shape, size, and stiffness range of commercial plastic microbeads, even without crosslinking. Solution processability and resulting bead shape and Young’s modulus can be tuned via biomass source, concentration, and degree of polymerization; biomass concentration, extrusion geometry, and precipitation and extraction conditions control the bead size. Lignin incorporation reduces the solution viscosity, which improves processability but also produces flatter beads with higher moduli than cellulose-only microbeads. While some lignin leaches from the beads when stored in water, adding surfactants like sodium dodecyl sulfate suppresses this effect, resulting in good mechanical stability over 2 months with no noticeable structural degradation. The stability of these mixed-source biomass microbeads—despite the absence of chemical crosslinking or derivatization—makes this route a promising, robust approach for obtaining environmentally-benign microbeads of tunable size and stiffness for use in PCCPs. 
    more » « less
  2. Abstract It is well‐known that tissue engineering scaffolds that feature highly interconnected and size‐adjustable micropores are oftentimes desired to promote cellular viability, motility, and functions. Unfortunately, the ability of precise control over the microporous structures within bioinks in a cytocompatible manner for applications in 3D bioprinting is generally lacking, until a method of micropore‐forming bioink based on gelatin methacryloyl (GelMA) was reported recently. This bioink took advantage of the unique aqueous two‐phase emulsion (ATPE) system, where poly(ethylene oxide) (PEO) droplets are utilized as the porogen. Considering the limitations associated with this very initial demonstration, this article has furthered the understanding of the micropore‐forming GelMA bioinks by conducting a systematic investigation into the additional GelMA types (porcine and fish, different methacryloyl‐modification degrees) and porogen types (PEO, poly(vinyl alcohol), and dextran), as well as the effects of the porogen concentrations and molecular weights on the properties of the GelMA‐based ATPE bioink system. This article exemplifies not only the significantly wider range of micropore sizes achievable and better emulsion stability, but also the improved suitability for both extrusion and digital light processing bioprinting with favorable cellular responses. 
    more » « less
  3. Abstract Susceptibility of mammalian cells against harsh processing conditions limit their use in cell transplantation and tissue engineering applications. Besides modulation of the cell microenvironment, encapsulation of mammalian cells within hydrogel microbeads attract attention for cytoprotection through physical isolation of the encapsulated cells. The hydrogel formulations used for cell microencapsulation are largely dominated by ionically crosslinked alginate (Alg), which suffer from low structural stability under physiological culture conditions and poor cell–matrix interactions. Here the fabrication of Alg templated silk and silk/gelatin composite hydrogel microspheres with permanent or on‐demand cleavable enzymatic crosslinks using simple and cost‐effective centrifugation‐based droplet processing are demonstrated. The composite microbeads display structural stability under ion exchange conditions with improved mechanical properties compared to ionically crosslinked Alg microspheres. Human mesenchymal stem and neural progenitor cells are successfully encapsulated in the composite beads and protected against environmental factors, including exposure to polycations, extracellular acidosis, apoptotic cytokines, ultraviolet (UV) irradiation, anoikis, immune recognition, and particularly mechanical stress. The microbeads preserve viability, growth, and differentiation of encapsulated stem and progenitor cells after extrusion in viscous polyethylene oxide solution through a 27‐gauge fine needle, suggesting potential applications in injection‐based delivery and three‐dimensional bioprinting of mammalian cells with higher success rates. 
    more » « less
  4. Abstract The cell is a microcapsule system wherein biological materials are encapsulated by a thin membrane, which provides valuable information on the metabolism, morphology, development, and signal transduction pathways of the studied cell. The cell-inspired microdroplet has the characteristics of efficient nanoscale substance transportation, self-organization, and morphological adaptation. However, it is extremely difficult to manufacture such systems. Mostly vesicles such as liposomes, polymersomes, and microcapsules are first produced by a high-pressure homogenizer and microfluidizer as an emulsion and then encapsulated microcapsules by the drop or emulsion method. Currently, acoustic levitation opens entirely new possibilities for creating bioinspired microdroplets because of its ability to suspend tiny droplets in an antigravity and noncontact manner. Herein, we propose contactless printing of single-core or multi-core cell-inspired microdroplets via acoustic levitation. First, the oscillation mode and microscopic morphology of the droplets under different ultrasonic vibration frequencies are shown by simulation, and the curing characteristics of the shell structure under different ultraviolet illumination conditions are quantitatively measured. The feasibility of manufacturing multi-core microdroplets and manufacturing submillimeter-scale particles based on oil trapping is extensively studied. To explore the morphological adaptability of microdroplets, ferromagnetic Fe3O4 nanoparticles are used to give magnetic-responsive properties to cells, and the microscopic deformation and motion in microfluidic channels under the magnetic field are characterized. Finally, the proposed printing method proves the versatility of in-space contactless printing of complex 3D beam structures and provides a powerful platform for developing biomedical devices and microrobots and studying morphogenesis and synthetic biological systems. 
    more » « less
  5. The curious chemistry observed in microdroplets has captivated chemists in recent years and has led to an investigation into their ability to drive seemingly impossible chemistries. One particularly interesting capability of these microdroplets is their ability to accelerate reactions by several orders of magnitude. While there have been many investigations into which reactions can be accelerated by confinement within microdroplets, no study has directly compared reaction acceleration at the liquid|liquid and gas|liquid interfaces. Here, we confine glucose oxidase, one of life’s most important enzymes, to microdroplets and monitor the turnover rate of glucose by the electroactive cofactor, hexacyanoferrate (III). We use stochastic electrochemistry to monitor the collision of single femtoliter water droplets on an ultramicroelectrode. We also develop a measurement modality to robustly quantify reaction rates for femtoliter liquid aerosol droplets, where the majority of the interface is gas|liquid. We demonstrate that the gas|liquid interface accelerates enzyme turnover by over an order of magnitude over the liquid|liquid interface. This is the first apples-to-apples comparison of reaction acceleration at two distinct interfaces that indicates that the gas|liquid interface plays a central role in driving curious chemistry. 
    more » « less