skip to main content


Title: Polar Codes with Exponentially Small Error at Finite Block Length
We show that the entire class of polar codes (up to a natural necessary condition) converge to capacity at block lengths polynomial in the gap to capacity, while simultaneously achieving failure probabilities that are exponentially small in the block length (i.e., decoding fails with probability exp(-N^{Omega(1)}) for codes of length N). Previously this combination was known only for one specific family within the class of polar codes, whereas we establish this whenever the polar code exhibits a condition necessary for any polarization. Our results adapt and strengthen a local analysis of polar codes due to the authors with Nakkiran and Rudra [Proc. STOC 2018]. Their analysis related the time-local behavior of a martingale to its global convergence, and this allowed them to prove that the broad class of polar codes converge to capacity at polynomial block lengths. Their analysis easily adapts to show exponentially small failure probabilities, provided the associated martingale, the "Arikan martingale", exhibits a corresponding strong local effect. The main contribution of this work is a much stronger local analysis of the Arikan martingale. This leads to the general result claimed above. In addition to our general result, we also show, for the first time, polar codes that achieve failure probability exp(-N^{beta}) for any beta < 1 while converging to capacity at block length polynomial in the gap to capacity. Finally we also show that the "local" approach can be combined with any analysis of failure probability of an arbitrary polar code to get essentially the same failure probability while achieving block length polynomial in the gap to capacity.  more » « less
Award ID(s):
1715187
NSF-PAR ID:
10098969
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Leibniz international proceedings in informatics
Volume:
116
ISSN:
1868-8969
Page Range / eLocation ID:
34:1-34:17
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Arıkan’s exciting discovery of polar codes has provided an altogether new way to efficiently achieve Shannon capacity. Given a (constant-sized) invertible matrix M , a family of polar codes can be associated with this matrix and its ability to approach capacity follows from the polarization of an associated [0, 1]-bounded martingale, namely its convergence in the limit to either 0 or 1 with probability 1. Arıkan showed appropriate polarization of the martingale associated with the matrix ( G 2 = ( 1 1 0 1) to get capacity achieving codes. His analysis was later extended to all matrices M that satisfy an obvious necessary condition for polarization. While Arıkan’s theorem does not guarantee that the codes achieve capacity at small blocklengths (specifically in length, which is a polynomial in ( 1ε ) where (ε) is the difference between the capacity of a channel and the rate of the code), it turns out that a “strong” analysis of the polarization of the underlying martingale would lead to such constructions. Indeed for the martingale associated with ( G 2 ) such a strong polarization was shown in two independent works (Guruswami and Xia (IEEE IT’15) and Hassani et al. (IEEE IT’14)), thereby resolving a major theoretical challenge associated with the efficient attainment of Shannon capacity. In this work we extend the result above to cover martingales associated with all matrices that satisfy the necessary condition for (weak) polarization. In addition to being vastly more general, our proofs of strong polarization are (in our view) also much simpler and modular. Key to our proof is a notion of local polarization that only depends on the evolution of the martingale in a single time step. We show that local polarization always implies strong polarization. We then apply relatively simple reasoning about conditional entropies to prove local polarization in very general settings. Specifically, our result shows strong polarization over all prime fields and leads to efficient capacity-achieving source codes for compressing arbitrary i.i.d. sources, and capacity-achieving channel codes for arbitrary symmetric memoryless channels. We show how to use our analyses to achieve exponentially small error probabilities at lengths inverse polynomial in the gap to capacity. Indeed we show that we can essentially match any error probability while maintaining lengths that are only inverse polynomial in the gap to capacity. 
    more » « less
  2. Arikan's exciting discovery of polar codes has provided an altogether new way to efficiently achieve Shannon capacity. Given a (constant-sized) invertible matrix M, a family of polar codes can be associated with this matrix and its ability to approach capacity follows from the polarization of an associated [0,1]-bounded martingale, namely its convergence in the limit to either 0 or 1 with probability 1. Arikan showed appropriate polarization of the martingale associated with the matrix G2=(1011) to get capacity achieving codes. His analysis was later extended to all matrices M which satisfy an obvious necessary condition for polarization. While Arikan's theorem does not guarantee that the codes achieve capacity at small blocklengths, it turns out that a "strong" analysis of the polarization of the underlying martingale would lead to such constructions. Indeed for the martingale associated with G2 such a strong polarization was shown in two independent works ([Guruswami and Xia, IEEE IT '15] and [Hassani et al., IEEE IT '14]), thereby resolving a major theoretical challenge associated with the efficient attainment of Shannon capacity. In this work we extend the result above to cover martingales associated with all matrices that satisfy the necessary condition for (weak) polarization. In addition to being vastly more general, our proofs of strong polarization are (in our view) also much simpler and modular. Key to our proof is a notion of local polarization that only depends on the evolution of the martingale in a single time step. Our result shows strong polarization over all prime fields and leads to efficient capacity-achieving source codes for compressing arbitrary i.i.d. sources, and capacity-achieving channel codes for arbitrary symmetric memoryless channels. 
    more » « less
  3. In general, the generator matrix sparsity is a critical factor in determining the encoding complexity of a linear code. Further, certain applications, e.g., distributed crowdsourcing schemes utilizing linear codes, require most or even all the columns of the generator matrix to have some degree of sparsity. In this paper, we leverage polar codes and the well-established channel polarization to design capacity-achieving codes with a certain constraint on the weights of all the columns in the generator matrix (GM) while having a low-complexity decoding algorithm. We first show that given a binary-input memoryless symmetric (BMS) channel $W$ and a constant $s \in (0, 1]$ , there exists a polarization kernel such that the corresponding polar code is capacity-achieving with the rate of polarization $s/2$ , and the GM column weights being bounded from above by $N^{s}$ . To improve the sparsity versus error rate trade-off, we devise a column-splitting algorithm and two coding schemes for BEC and then for general BMS channels. The polar-based codes generated by the two schemes inherit several fundamental properties of polar codes with the original $2 \times 2$ kernel including the decay in error probability, decoding complexity, and the capacity-achieving property. Furthermore, they demonstrate the additional property that their GM column weights are bounded from above sublinearly in $N$ , while the original polar codes have some column weights that are linear in $N$ . In particular, for any BEC and $\beta < 0.5$ , the existence of a sequence of capacity-achieving polar-based codes where all the GM column weights are bounded from above by $N^{\lambda} $ with $\lambda \approx 0.585$ , and with the error probability bounded by ${\mathcal {O}}(2^{-N^{\beta }})$ under a decoder with complexity ${\mathcal {O}}(N\log N)$ , is shown. The existence of similar capacity-achieving polar-based codes with the same decoding complexity is shown for any BMS channel and $\beta < 0.5$ with $\lambda \approx 0.631$ . 
    more » « less
  4. We present new constructions of pseudorandom generators (PRGs) for two of the most widely studied non-uniform circuit classes in complexity theory. Our main result is a construction of the first non-trivial PRG for linear threshold (LTF) circuits of arbitrary constant depth and super-linear size. This PRG fools circuits with depth d∈N and n1+δ wires, where δ=2−O(d) , using seed length O(n1−δ) and with error 2−nδ . This tightly matches the best known lower bounds for this circuit class. As a consequence of our result, all the known hardness for LTF circuits has now effectively been translated into pseudorandomness. This brings the extensive effort in the last decade to construct PRGs and deterministic circuit-analysis algorithms for this class to the point where any subsequent improvement would yield breakthrough lower bounds. Our second contribution is a PRG for De Morgan formulas of size s whose seed length is s1/3+o(1)⋅polylog(1/ϵ) for error ϵ . In particular, our PRG can fool formulas of sub-cubic size s=n3−Ω(1) with an exponentially small error ϵ=exp(−nΩ(1)) . This significantly improves the inverse-polynomial error of the previous state-of-the-art for such formulas by Impagliazzo, Meka, and Zuckerman (FOCS 2012, JACM 2019), and again tightly matches the best currently-known lower bounds for this class. In both settings, a key ingredient in our constructions is a pseudorandom restriction procedure that has tiny failure probability, but simplifies the function to a non-natural “hybrid computational model” that combines several computational models. 
    more » « less
  5. Consider a binary linear code of length N, minimum distance dmin, transmission over the binary erasure channel with parameter 0 <  < 1 or the binary symmetric channel with parameter 0 <  < 1 2 , and block-MAP decoding. It was shown by Tillich and Zemor that in this case the error probability of the block-MAP decoder transitions “quickly” from δ to 1−δ for any δ > 0 if the minimum distance is large. In particular the width of the transition is of order O(1/ √ dmin). We strengthen this result by showing that under suitable conditions on the weight distribution of the code, the transition width can be as small as Θ(1/N 1 2 −κ ), for any κ > 0, even if the minimum distance of the code is not linear. This condition applies e.g., to Reed-Mueller codes. Since Θ(1/N 1 2 ) is the smallest transition possible for any code, we speak of “almost” optimal scaling. We emphasize that the width of the transition says nothing about the location of the transition. Therefore this result has no bearing on whether a code is capacity-achieving or not. As a second contribution, we present a new estimate on the derivative of the EXIT function, the proof of which is based on the Blowing-Up Lemma. 
    more » « less