skip to main content


Title: The Future of IoT Security: Special Session
The Internet-of-Things (IoT) is a large and complex domain. These systems are often constructed using a very diverse set of hardware, software and protocols. This, combined with the ever increasing number of IoT solutions/services that are rushed to market means that most such systems are rife with security holes. Recent incidents (e.g., the Mirai botnet) further highlight such security issues. With emerging technologies such as blockchain and software-defined networks (SDNs), new security solutions are possible in the IoT domain. In this paper we will explore future trends in IoT security: (a) the use of blockchains in IoT security, (b) data provenance for sensor information, (c) reliable and secure transport mechanisms using SDNs (d) scalable authentication and remote attestation mechanisms for IoT devices and (e) threat modeling and risk/maturity assessment frameworks for the domain.  more » « less
Award ID(s):
1718952 1544901
NSF-PAR ID:
10099235
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
International Conference on Embedded Software (EMSOFT)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Computer networks often serve as the first line of defense against malicious attacks. Although there are a growing number of software defined networking (SDN) tools for defining and enforcing security policies, most assume a single administrative domain and are unable to handle the challenges that arise in networks that could beneficially be programmed by multiple administrative domains. For example, consumers may want want to allow their home IoT networks to be configured by device vendors, which raises security and privacy concerns. In this paper we propose a framework called Proof Carrying Network Code (PCNC) for specifying and enforcing security in SDNs with interacting administrative domains. Like Proof Carrying Authorization (PCA), PCNC provides methods for authorization domains for network reprogramming, and like Proof Carrying Code (PCC), PCNC provides methods for enforcing desired behavior of network programs. We develop theoretical foundations for PCNC and evaluate it in simulated and real network settings, in a case study that considers security in IoT networks for at-home health monitoring. 
    more » « less
  2. The Internet of Things (IoT) is a network of sensors that helps collect data 24/7 without human intervention. However, the network may suffer from problems such as the low battery, heterogeneity, and connectivity issues due to the lack of standards. Even though these problems can cause several performance hiccups, security issues need immediate attention because hackers access vital personal and financial information and then misuse it. These security issues can allow hackers to hijack IoT devices and then use them to establish a Botnet to launch a Distributed Denial of Service (DDoS) attack. Blockchain technology can provide security to IoT devices by providing secure authentication using public keys. Similarly, Smart Contracts (SCs) can improve the performance of the IoT–blockchain network through automation. However, surveyed work shows that the blockchain and SCs do not provide foolproof security; sometimes, attackers defeat these security mechanisms and initiate DDoS attacks. Thus, developers and security software engineers must be aware of different techniques to detect DDoS attacks. In this survey paper, we highlight different techniques to detect DDoS attacks. The novelty of our work is to classify the DDoS detection techniques according to blockchain technology. As a result, researchers can enhance their systems by using blockchain-based support for detecting threats. In addition, we provide general information about the studied systems and their workings. However, we cannot neglect the recent surveys. To that end, we compare the state-of-the-art DDoS surveys based on their data collection techniques and the discussed DDoS attacks on the IoT subsystems. The study of different IoT subsystems tells us that DDoS attacks also impact other computing systems, such as SCs, networking devices, and power grids. Hence, our work briefly describes DDoS attacks and their impacts on the above subsystems and IoT. For instance, due to DDoS attacks, the targeted computing systems suffer delays which cause tremendous financial and utility losses to the subscribers. Hence, we discuss the impacts of DDoS attacks in the context of associated systems. Finally, we discuss Machine-Learning algorithms, performance metrics, and the underlying technology of IoT systems so that the readers can grasp the detection techniques and the attack vectors. Moreover, associated systems such as Software-Defined Networking (SDN) and Field-Programmable Gate Arrays (FPGA) are a source of good security enhancement for IoT Networks. Thus, we include a detailed discussion of future development encompassing all major IoT subsystems. 
    more » « less
  3. his work presents a sustainable cybersecurity solution using Physical Unclonable Functions (PUF), Trusted Platform Module (TPM), and Tangle Distributed Ledger Technology (DLT) for sustainable device and data security. Security-by-Design (SbD) or Hardware- Assisted Security (HAS) solutions have gained much prominence due to the requirement of tamper-proof storage for hardwareassisted cryptography solutions. Designing complex security mechanisms can impact their efficiency as IoT applications are more decentralized. In the proposed architecture, we presented a novel TPM-enabled PUF-based security mechanism with effective integration of PUF with TPM. The proposed mechanism is based on the process of sealing the PUF key in the TPM, which cannot be accessed outside the TPM and can only be unsealed by the TPM itself. A specified NV-index is assigned to each IoT node for sealing the PUF key to TPM using the Media Access Control (MAC) address. Access to the TPM's Non-Volatile Random Access Memory (NVRAM) is defined by the TPM's Enhanced Authorization policies as specified by the Trust Computing Group (TCG). The proposed architecture uses Tangle for sustainable data security and storage in decentralized IoT systems through a Masked Authentication Messaging (MAM) scheme for efficient and secure access control to Tangle. We validated the proposed approach through experimental analysis and implementation, which substantiates the potential of the presented PUFchain 4.0 for decentralized IoT-driven security solutions. 
    more » « less
  4. The NTT (Nippon Telegraph and Telephone) Data Corporation report found that 80% of U.S. consumers are concerned about their smart home data security. The Internet of Things (IoT) technology brings many benefits to people's homes, and more people across the world are heavily dependent on the technology and its devices. However, many IoT devices are deployed without considering security, increasing the number of attack vectors available to attackers. Numerous Internet of Things devices lacking security features have been compromised by attackers, resulting in many security incidents. Attackers can infiltrate these smart home devices and control the home via turning off the lights, controlling the alarm systems, and unlocking the smart locks, to name a few. Attackers have also been able to access the smart home network, leading to data exfiltration. There are many threats that smart homes face, such as the Man-in-the-Middle (MIM) attacks, data and identity theft, and Denial of Service (DoS) attacks. The hardware vulnerabilities often targeted by attackers are SPI, UART, JTAG, USB, etc. Therefore, to enhance the security of the smart devices used in our daily lives, threat modeling should be implemented early on in developing any given system. This past Spring semester, Morgan State University launched a (senior) capstone project targeting undergraduate (electrical) engineering students who were thus allowed to research with the Cybersecurity Assurance and Policy (CAP) center for four months. The primary purpose of the capstone was to help students further develop both hardware and software skills while researching. For this project, the students mainly focused on the Arduino Mega Board. Some of the expected outcomes for this capstone project include: 1) understanding the physical board components, 2) learning how to attack the board through the STRIDE technique, 3) generating a Data Flow Diagram (DFD) of the system using the Microsoft threat modeling tool, 4) understanding the attack patterns, and 5) generating the threat based on the user's input. To prevent future threats and attacks from taking advantage of systems vulnerabilities, the practice of "threat modeling" is implemented. This method allows the analysis of potential attackers, including their goals and techniques, while also providing solutions and mitigation strategies. Although Threat modeling can be performed throughout the development of a system, implementing it during developmental stages will prevent further problems in the future. Threat Modeling is crucial because it will help identify any potential threat before it propagates in the system. Identifying threats and providing countermeasures will save both time and money while also keeping the consumers safe. As a result, students must grow to understand how essential detecting and preventing attacks are to protect consumer information systems and networks. At the end of this capstone project, students should take away hands-on skills in cyber defense. 
    more » « less
  5. null (Ed.)
    Growth of the Internet-of-things has led to complex system-on-chips (SoCs) being used in the edge devices in IoT applications. The increased complexity is demanding designers to consider several critical factors, such as dynamic requirement changes, long application life, mass production, and tight time-to-market deadlines. These requirements lead to more complex security concerns. SoC manufacturers outsource some of the intellectual property cores integrated on the SoC to untrusted third-party vendors. The untrusted intellectual properties can contain malicious implants, which can launch attacks using the resources provided by the on-chip interconnection network, commonly known as the network-on-chip (NoC). Existing efforts on securing NoC have considered lightweight encryption, authentication, and other attack detection mechanisms such as denial-of-service and buffer overflows. Unfortunately, these approaches focus on designing statically optimized security solutions. As a result, they are not suitable for many IoT systems with long application life and dynamic requirement changes. There is a critical need to design reconfigurable security architectures that can be dynamically tuned based on changing requirements. In this article, we propose a tier-based reconfigurable security architecture that can adapt to different use-case scenarios. We explore how to design an efficient reconfigurable architecture that can support three popular NoC security mechanisms (encryption, authentication, and denial-of-service attack detection and localization) and implement suitable dynamic reconfiguration techniques. We evaluate our proposed framework by running standard benchmarks enabling different tiers of security and provide a comprehensive analysis of how different levels of security can affect application performance, energy efficiency, and area overhead. 
    more » « less