Providing end-to-end network delay guarantees in packet-switched networks such as the Internet is highly desirable for mission-critical and delay-sensitive data transmission, yet it remains a challenging open problem. Due to the looseness of the deterministic bounds, various frameworks for stochastic network calculus have been proposed to provide tighter, probabilistic bounds on network delay, at least in theory. However, little attention has been devoted to the problem of regulating traffic according to stochastic burstiness bounds, which is necessary in order to guarantee the delay bounds in practice. We propose and analyze a stochastic traffic regulator that can be used in conjunction with results from stochastic network calculus to provide probabilistic guarantees on end-to-end network delay. Numerical results are provided to demonstrate the performance of the proposed traffic regulator.
more »
« less
Diversity Routing to Improve Delay-Jitter Tradeoff in Uncertain Network Environments
In this paper we propose a novel approach to deliver better delay-jitter performance in dynamic networks. Dynamic networks experience rapid and unpredictable fluctuations and hence, a certain amount of uncertainty about the delay-performance of various network elements is unavoidable. This uncertainty makes it difficult for network operators to guarantee a certain quality of service (in terms of delay and jitter) to users. The uncertainty about the state of the network is often overlooked to simplify problem formulation, but we capture it by modeling the delay on various links as general and potentially correlated random processes. Within this framework, a user will request a certain delay-jitter performance guarantee from the network. After verifying the feasibility of the request, the network will respond to the user by specifying a set of routes as well as the proportion of traffic which should be sent through each one to achieve the desired QoS. We propose to use mean-variance analysis as the basis for traffic distribution and route selection, and show that this technique can significantly reduce the end-to-end jitter because it accounts for the correlated nature of delay across different paths. The resulting traffic distribution is often non-uniform and the fractional flow on each path is the solution to a simple convex optimization problem. We conclude the paper by commenting on the potential application of this method to general transportation networks.
more »
« less
- Award ID(s):
- 1717199
- PAR ID:
- 10099346
- Date Published:
- Journal Name:
- IEEE International Conference on Communications
- ISSN:
- 1550-3607
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Providing end-to-end network delay guarantees in packet-switched networks such as the Internet is highly desirable for mission-critical and delay-sensitive data transmission, yet it remains a challenging open problem. Since deterministic bounds are based on the worst-case traffic behavior, various frameworks for stochastic network calculus have been proposed to provide less conservative, probabilistic bounds on network delay, at least in theory. However, little attention has been devoted to the problem of regulating traffic according to stochastic burstiness bounds, which is necessary in order to guarantee the delay bounds in practice. We design and analyze a stochastic traffic regulator that can be used in conjunction with results from stochastic network calculus to provide probabilistic guarantees on end-to-end network delay. Two alternative implementations of the stochastic regulator are developed and compared. Numerical results are provided to demonstrate the performance of the proposed stochastic traffic regulator.more » « less
-
Evaluation of end-to-end network performance using realistic traffic models is a challenging problem in networking. The classical theory of queueing networks is feasible only under rather restrictive assumptions on the input traffic models and network elements. An alternative approach, first proposed in the late 1980s, is to impose deterministic bounds on the input traffic that can be used as a basis for a network calculus to compute end-to-end network delay bounds. Such deterministic bounds are inherently loose as they must accommodate worst case scenarios. Since the early 1990s, efforts have shifted to development of a stochastic network calculus to provide probabilistic end-to-end performance bounds. In this paper, we capitalize on the approach of stochastically bounded burstiness (SBB) which was developed for a general class of bounding functions, and was demonstrated for a bound that is based on a mixture distribution. We specialize the SBB bounds to bounds based on the class of phase-type distributions, which includes mixture distributions as a particular case. We develop the phase-type bounds and demonstrate their performance.more » « less
-
Distributing quantum entanglements over long distances is essential for the realization of a global scale quantum Internet. Most of the prior work and proposals assume an on-demand distribution of entanglements which may result in significant network resource under-utilization. In this work, we introduce Quantum Overlay Networks (QONs) for efficient entanglement distribution in quantum networks. When the demand to create end-to-end user entanglements is low, QONs can generate and store maximally entangled Bell pairs (EPR pairs) at specific overlay storage nodes of the network. Later, during peak demands, requests can be served by performing entanglement swaps either over a direct path from the network or over a path using the storage nodes. We solve the link entanglement and storage resource allocation problem in such a QON using a centralized optimization framework. We evaluate the performance of our proposed QON architecture over a wide number of network topologies under various settings using extensive simulation experiments. Our results demonstrate that QONs fare well by a factor of 40% with respect to meeting surge and changing demands compared to traditional non-overlay proposals. QONs also show significant improvement in terms of average entanglement request service delay over non-overlay approaches.more » « less
-
null (Ed.)Time-Sensitive Networking (TSN) is designed for real-time applications, usually pertaining to a set of Time-Triggered (TT) data flows. TT traffic generally requires low packet loss and guaranteed upper bounds on end-to-end delay. To guarantee the end-to-end delay bounds, TSN uses Time-Aware Shaper (TAS) to provide deterministic service to TT flows. Each frame of TT traffic is scheduled a specific time slot at each switch for its transmission. Several factors may influence frame transmissions, which then impact the scheduling in the whole network. These factors may cause frames sent in wrong time slots, namely misbehaviors. To mitigate the occurrence of misbehaviors, we need to find proper scheduling for the whole network. In our research, we use a reinforcement-learning model, which is called Deep Deterministic Policy Gradient (DDPG), to find the suitable scheduling. DDPG is used to model the uncertainty caused by the transmission-influencing factors such as time-synchronization errors. Compared with the state of the art, our approach using DDPG significantly decreases the number of misbehaviors in TSN scenarios studied and improves the delay performance of the network.more » « less
An official website of the United States government

