Providing end-to-end network delay guarantees in packet-switched networks such as the Internet is highly desirable for mission-critical and delay-sensitive data transmission, yet it remains a challenging open problem. Due to the looseness of the deterministic bounds, various frameworks for stochastic network calculus have been proposed to provide tighter, probabilistic bounds on network delay, at least in theory. However, little attention has been devoted to the problem of regulating traffic according to stochastic burstiness bounds, which is necessary in order to guarantee the delay bounds in practice. We propose and analyze a stochastic traffic regulator that can be used in conjunction with results from stochastic network calculus to provide probabilistic guarantees on end-to-end network delay. Numerical results are provided to demonstrate the performance of the proposed traffic regulator.
more »
« less
Diversity Routing to Improve Delay-Jitter Tradeoff in Uncertain Network Environments
In this paper we propose a novel approach to deliver better delay-jitter performance in dynamic networks.
Dynamic networks experience rapid and unpredictable fluctuations and hence, a certain amount of uncertainty about the delay-performance of various network elements is unavoidable. This uncertainty makes it difficult for network operators to guarantee a certain quality of service (in terms of delay and jitter) to users. The uncertainty about the state of the network is often overlooked to simplify problem formulation, but we capture it by modeling the delay on various links as general and potentially correlated random processes. Within this framework, a user will request a certain delay-jitter performance guarantee from the network. After verifying the feasibility of the request, the network will respond to the user by specifying a set of routes as well as the proportion of traffic which should be sent through each one to achieve the desired QoS. We propose to use mean-variance analysis as the basis for traffic distribution and route selection, and show that this technique can significantly reduce the end-to-end jitter because it accounts for the correlated nature of delay across different paths. The resulting traffic distribution is often non-uniform and the fractional flow on each path is the solution to a simple convex optimization problem. We conclude the paper by commenting on the potential application of this method to general transportation networks.
more »
« less
- Award ID(s):
- 1717199
- NSF-PAR ID:
- 10099346
- Date Published:
- Journal Name:
- IEEE International Conference on Communications
- ISSN:
- 1550-3607
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract: Radio access network (RAN) in 5G is expected to satisfy the stringent delay requirements of a variety of applications. The packet scheduler plays an important role by allocating spectrum resources to user equipments (UEs) at each transmit time interval (TTI). In this paper, we show that optimal scheduling is a challenging combinatorial optimization problem, which is hard to solve within the channel coherence time with conventional optimization methods. Rule-based scheduling methods, on the other hand, are hard to adapt to the time-varying wireless channel conditions and various data request patterns of UEs. Recently, integrating artificial intelligence (AI) into wireless networks has drawn great interest from both academia and industry. In this paper, we incorporate deep reinforcement learning (DRL) into the design of cellular packet scheduling. A delay-aware cell traffic scheduling algorithm is developed to map the observed system state to scheduling decision. Due to the huge state space, a recurrent neural network (RNN) is utilized to approximate the optimal action-policy function. Different from conventional rule-based scheduling methods, the proposed scheme can learn from the interactions with the environment and adaptively choosing the best scheduling decision at each TTI. Simulation results show that the DRL-based packet scheduling can achieve the lowest average delay compared with several conventional approaches. Meanwhile, the UEs' average queue lengths can also be significantly reduced. The developed method also exhibits great potential in real-time scheduling in delay-sensitive scenarios.more » « less
-
Providing end-to-end network delay guarantees in packet-switched networks such as the Internet is highly desirable for mission-critical and delay-sensitive data transmission, yet it remains a challenging open problem. Since deterministic bounds are based on the worst-case traffic behavior, various frameworks for stochastic network calculus have been proposed to provide less conservative, probabilistic bounds on network delay, at least in theory. However, little attention has been devoted to the problem of regulating traffic according to stochastic burstiness bounds, which is necessary in order to guarantee the delay bounds in practice. We design and analyze a stochastic traffic regulator that can be used in conjunction with results from stochastic network calculus to provide probabilistic guarantees on end-to-end network delay. Two alternative implementations of the stochastic regulator are developed and compared. Numerical results are provided to demonstrate the performance of the proposed stochastic traffic regulator.more » « less
-
Obeid, I. ; Selesnik, I. ; Picone, J. (Ed.)The Neuronix high-performance computing cluster allows us to conduct extensive machine learning experiments on big data [1]. This heterogeneous cluster uses innovative scheduling technology, Slurm [2], that manages a network of CPUs and graphics processing units (GPUs). The GPU farm consists of a variety of processors ranging from low-end consumer grade devices such as the Nvidia GTX 970 to higher-end devices such as the GeForce RTX 2080. These GPUs are essential to our research since they allow extremely compute-intensive deep learning tasks to be executed on massive data resources such as the TUH EEG Corpus [2]. We use TensorFlow [3] as the core machine learning library for our deep learning systems, and routinely employ multiple GPUs to accelerate the training process. Reproducible results are essential to machine learning research. Reproducibility in this context means the ability to replicate an existing experiment – performance metrics such as error rates should be identical and floating-point calculations should match closely. Three examples of ways we typically expect an experiment to be replicable are: (1) The same job run on the same processor should produce the same results each time it is run. (2) A job run on a CPU and GPU should produce identical results. (3) A job should produce comparable results if the data is presented in a different order. System optimization requires an ability to directly compare error rates for algorithms evaluated under comparable operating conditions. However, it is a difficult task to exactly reproduce the results for large, complex deep learning systems that often require more than a trillion calculations per experiment [5]. This is a fairly well-known issue and one we will explore in this poster. Researchers must be able to replicate results on a specific data set to establish the integrity of an implementation. They can then use that implementation as a baseline for comparison purposes. A lack of reproducibility makes it very difficult to debug algorithms and validate changes to the system. Equally important, since many results in deep learning research are dependent on the order in which the system is exposed to the data, the specific processors used, and even the order in which those processors are accessed, it becomes a challenging problem to compare two algorithms since each system must be individually optimized for a specific data set or processor. This is extremely time-consuming for algorithm research in which a single run often taxes a computing environment to its limits. Well-known techniques such as cross-validation [5,6] can be used to mitigate these effects, but this is also computationally expensive. These issues are further compounded by the fact that most deep learning algorithms are susceptible to the way computational noise propagates through the system. GPUs are particularly notorious for this because, in a clustered environment, it becomes more difficult to control which processors are used at various points in time. Another equally frustrating issue is that upgrades to the deep learning package, such as the transition from TensorFlow v1.9 to v1.13, can also result in large fluctuations in error rates when re-running the same experiment. Since TensorFlow is constantly updating functions to support GPU use, maintaining an historical archive of experimental results that can be used to calibrate algorithm research is quite a challenge. This makes it very difficult to optimize the system or select the best configurations. The overall impact of all of these issues described above is significant as error rates can fluctuate by as much as 25% due to these types of computational issues. Cross-validation is one technique used to mitigate this, but that is expensive since you need to do multiple runs over the data, which further taxes a computing infrastructure already running at max capacity. GPUs are preferred when training a large network since these systems train at least two orders of magnitude faster than CPUs [7]. Large-scale experiments are simply not feasible without using GPUs. However, there is a tradeoff to gain this performance. Since all our GPUs use the NVIDIA CUDA® Deep Neural Network library (cuDNN) [8], a GPU-accelerated library of primitives for deep neural networks, it adds an element of randomness into the experiment. When a GPU is used to train a network in TensorFlow, it automatically searches for a cuDNN implementation. NVIDIA’s cuDNN implementation provides algorithms that increase the performance and help the model train quicker, but they are non-deterministic algorithms [9,10]. Since our networks have many complex layers, there is no easy way to avoid this randomness. Instead of comparing each epoch, we compare the average performance of the experiment because it gives us a hint of how our model is performing per experiment, and if the changes we make are efficient. In this poster, we will discuss a variety of issues related to reproducibility and introduce ways we mitigate these effects. For example, TensorFlow uses a random number generator (RNG) which is not seeded by default. TensorFlow determines the initialization point and how certain functions execute using the RNG. The solution for this is seeding all the necessary components before training the model. This forces TensorFlow to use the same initialization point and sets how certain layers work (e.g., dropout layers). However, seeding all the RNGs will not guarantee a controlled experiment. Other variables can affect the outcome of the experiment such as training using GPUs, allowing multi-threading on CPUs, using certain layers, etc. To mitigate our problems with reproducibility, we first make sure that the data is processed in the same order during training. Therefore, we save the data from the last experiment and to make sure the newer experiment follows the same order. If we allow the data to be shuffled, it can affect the performance due to how the model was exposed to the data. We also specify the float data type to be 32-bit since Python defaults to 64-bit. We try to avoid using 64-bit precision because the numbers produced by a GPU can vary significantly depending on the GPU architecture [11-13]. Controlling precision somewhat reduces differences due to computational noise even though technically it increases the amount of computational noise. We are currently developing more advanced techniques for preserving the efficiency of our training process while also maintaining the ability to reproduce models. In our poster presentation we will demonstrate these issues using some novel visualization tools, present several examples of the extent to which these issues influence research results on electroencephalography (EEG) and digital pathology experiments and introduce new ways to manage such computational issues.more » « less
-
Evaluation of end-to-end network performance using realistic traffic models is a challenging problem in networking. The classical theory of queueing networks is feasible only under rather restrictive assumptions on the input traffic models and network elements. An alternative approach, first proposed in the late 1980s, is to impose deterministic bounds on the input traffic that can be used as a basis for a network calculus to compute end-to-end network delay bounds. Such deterministic bounds are inherently loose as they must accommodate worst case scenarios. Since the early 1990s, efforts have shifted to development of a stochastic network calculus to provide probabilistic end-to-end performance bounds. In this paper, we capitalize on the approach of stochastically bounded burstiness (SBB) which was developed for a general class of bounding functions, and was demonstrated for a bound that is based on a mixture distribution. We specialize the SBB bounds to bounds based on the class of phase-type distributions, which includes mixture distributions as a particular case. We develop the phase-type bounds and demonstrate their performance.more » « less