skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Photodynamics of alternative DNA base isoguanine
Isoguanine is an alternative nucleobase that has been proposed as a component of expanded genetic codes. It has also been considered as a molecule with potential relevance to primordial informational polymers. Here, we scrutinize the photodynamics of isoguanine, because photostability has been proposed as a critical criterion for the prebiotic selection of biomolecular building blocks on an early Earth. We discuss resonance-enhanced multiphoton ionization, IR-UV double resonance spectroscopy and pump–probe measurements performed for this molecule to track the excited-state behaviour of its different tautomeric forms in the gas phase. These experiments, when confronted with highly accurate quantum chemical calculations and nonadiabatic dynamics simulations provide a complete mechanistic picture of the tautomer-specific photodynamics of isoguanine. Our results indicate that UV-excited enol tautomers of isoguanine are relatively short lived and therefore photostable. In contrast, the biologically more relevant keto forms are trapped in dark nπ* states which are sufficiently long lived to participate in destructive photochemistry. The resulting lower photostability compared to canonical nucleobases may have been one of the reasons why isoguanine was not incorporated into DNA and RNA.  more » « less
Award ID(s):
1800283
PAR ID:
10099474
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
ISSN:
1463-9076
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Machine learning (ML) continues to revolutionize computational chemistry for accelerating predictions and simulations by training on experimental or accurate but expensive quantum mechanical (QM) calculations. Photodynamics simulations require hundreds of trajectories coupled with multiconfigurational QM calculations of excited-state potential energies surfaces that contribute to the prohibitive computational cost at long timescales and complex organic molecules. ML accelerates photodynamics simulations by combining nonadiabatic photodynamics simulations with an ML model trained with high-fidelity QM calculations of energies, forces, and non-adiabatic couplings. This approach has provided time-dependent molecular structural information for understanding photochemical reaction mechanisms of organic reactions in vacuum and complex environments (i.e., explicit solvation). This review focuses on the fundamentals of QM calculations and ML techniques. We, then, discuss the strategies to balance adequate training data and the computational cost of generating these training data. Finally, we demonstrate the power of applying these ML-photodynamics simulations to understand the origin of reactivities and selectivities of organic photochemical reactions, such as cis–trans isomerization, [2 + 2]-cycloaddition, 4π-electrostatic ring-closing, and hydrogen roaming mechanism. 
    more » « less
  2. Abstract One-photon-absorbing photosensitizers are commonly used in homogeneous photocatalysis which require the absorption of ultraviolet (UV) /visible light to populate the desired excited states with adequate energy and lifetime. Nevertheless, the limited penetration depth and competing absorption by organic substrates of UV/visible light calls upon exploring the utilization of longer-wavelength irradiation, such as near-infrared light (λ irr  > 700 nm). Despite being found applications in photodynamic therapy and bioimaging, two-photon absorption (TPA), the simultaneous absorption of two photons by one molecule, has been rarely explored in homogeneous photocatalysis. Herein, we report a group of ruthenium polypyridyl complexes possessing TPA capability that can drive a variety of organic transformations upon irradiation with 740 nm light. We demonstrate that these TPA ruthenium complexes can operate in an analogous manner as one-photon-absorbing photosensitizers for both energy-transfer and photoredox reactions, as well as function in concert with a transition metal co-catalyst for metallaphotoredox C–C coupling reactions. 
    more » « less
  3. Abstract Hypericin from St. John's wort has been used as a potent photosensitizer, but its working mechanism remains elusive which hinders its rational design for improved functionality. We implement ultrafast spectroscopy and quantum calculations to track the excited‐state dynamics in an intricate hydrogen‐bonding network of hypericin in solution. Using femtosecond transient absorption (fs‐TA), we track excited state intramolecular proton transfer (ESIPT) via a previously unreported blueshift of a long‐wavelength stimulated emission (SE) band with excitation‐dependent dynamics in various solvents, owing to the dominant Q7,14tautomer that undergoes bidirectional ESIPT. This finding is corroborated by ground‐state femtosecond stimulated Raman spectroscopy (GS‐FSRS) and density functional theory (DFT) calculations. Moreover, contrasting the neutral and anionic forms of hypericin enables us to reveal an intramolecular charge transfer step underlying ESIPT. We demonstrate UV and visible excitations as an integral platform to provide direct insights into the photophysics and origin for phototoxicity of hypericin. Such mechanistic insights into the excited state of hypericin will power its future development and use. 
    more » « less
  4. Disulfide bonds are ubiquitous molecular motifs that influence the tertiary structure and biological functions of many proteins. Yet, it is well known that the disulfide bond is photolabile when exposed to ultraviolet C (UVC) radiation. The deep-UV–induced S─S bond fragmentation kinetics on very fast timescales are especially pivotal to fully understand the photostability and photodamage repair mechanisms in proteins. In 1,2-dithiane, the smallest saturated cyclic molecule that mimics biologically active species with S─S bonds, we investigate the photochemistry upon 200-nm excitation by femtosecond time-resolved x-ray scattering in the gas phase using an x-ray free electron laser. In the femtosecond time domain, we find a very fast reaction that generates molecular fragments with one and two sulfur atoms. On picosecond and nanosecond timescales, a complex network of reactions unfolds that, ultimately, completes the sulfur dissociation from the parent molecule. 
    more » « less
  5. The color purple has long been used as a symbol of royalty and power in art, fashion, and architecture. This correlation with aristocracy can be traced back to the use of molluscan purple, a rich purple dye that is still presently more expensive than gold, by royalty as early as the 18th century BCE. While the molluscan purple dye is composed of a mixture of various proteins, its color is derived from indigotin, indirubin and their brominated derivatives, including the molecule, 6,6’-dibromoindigotin, an analogue of the indigotin dye which is also widely used in various modern industries. Both dyes can exhibit high stability, in particular against photodamage from UV and Visible radiation. In this study, we present the gas phase absorption spectrum and excited-state lifetimes of 6,6’-dibromoindigotin combined with static calculations of the excited and ground-state potential energy surfaces. The lifetime measurements reveal that molluscan purple has nearly the same relaxation rate as indigotin providing new insights in the possible relaxation mechanisms of the indigotin family of dye molecules. 
    more » « less