skip to main content


Title: Regularized Fourier Ptychography using an Online Plug-and-Play Algorithm
The plug-and-play priors (PnP) framework has been recently shown to achieve state-of-the-art results in regularized image reconstruction by leveraging a sophisticated denoiser within an iterative algorithm. In this paper, we propose a new online PnP algorithm for Fourier ptychographic microscopy (FPM) based on the accelerated proximal gradient method (APGM). Specifically, the proposed algorithm uses only a subset of measurements, which makes it scalable to a large set of measurements. We validate the algorithm by showing that it can lead to significant performance gains on both simulated and experimental data.  more » « less
Award ID(s):
1813910
NSF-PAR ID:
10099623
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ICASSP proceedings
ISSN:
0736-7791
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Plug-and-play priors (PnP) is a powerful framework for regularizing imaging inverse problems by using advanced denoisers within an iterative algorithm. Recent experimental evidence suggests that PnP algorithms achieve state-of-the-art performance in a range of imaging applications. In this paper, we introduce a new online PnP algorithm based on the proximal gradient method (PGM). The proposed algorithm uses only a subset of measurements at every iteration, which makes it scalable to very large datasets. We present a new theoretical convergence analysis, for both batch and online variants of PnP-PGM, for denoisers that do not necessarily correspond to proximal operators. We also present simulations illustrating the applicability of the algorithm to image reconstruction in diffraction tomography. The results in this paper have the potential to expand the applicability of the PnP framework to very large datasets. 
    more » « less
  2. Plug-and-Play Alternating Direction Method of Multipliers (PnP-ADMM) is a widely-used algorithm for solving inverse problems by integrating physical measurement models and convolutional neural network (CNN) priors. PnP-ADMM has been theoretically proven to converge for convex data-fidelity terms and nonexpansive CNNs. It has however been observed that PnP-ADMM often empirically converges even for expansive CNNs. This paper presents a theoretical explanation for the observed stability of PnP-ADMM based on the interpretation of the CNN prior as a minimum mean-squared error (MMSE) denoiser. Our explanation parallels a similar argument recently made for the iterative shrinkage/thresholding algorithm variant of PnP (PnP-ISTA) and relies on the connection between MMSE denoisers and proximal operators. We also numerically evaluate the performance gap between PnP-ADMM using a nonexpan-sive DnCNN denoiser and expansive DRUNet denoiser, thus motivating the use of expansive CNNs. 
    more » « less
  3. Posterior sampling has been shown to be a powerful Bayesian approach for solving imaging inverse problems. The recent plug-and-play unadjusted Langevin algorithm (PnP-ULA) has emerged as a promising method for Monte Carlo sampling and minimum mean squared error (MMSE) estimation by combining physical measurement models with deep-learning priors specified using image denoisers. However, the intricate relationship between the sampling distribution of PnP-ULA and the mismatched data-fidelity and denoiser has not been theoretically analyzed. We address this gap by proposing a posterior-L2 pseudometric and using it to quantify an explicit error bound for PnP-ULA under mismatched posterior distribution. We numerically validate our theory on several inverse problems such as sampling from Gaussian mixture models and image deblurring. Our results suggest that the sensitivity of the sampling distribution of PnP-ULA to a mismatch in the measurement model and the denoiser can be precisely characterized. 
    more » « less
  4. Plug-and-Play Priors (PnP) is a well-known class of methods for solving inverse problems in computational imaging. PnP methods combine physical forward models with learned prior models specified as image denoisers. A common issue with the learned models is that of a performance drop when there is a distribution shift between the training and testing data. Test-time training (TTT) was recently proposed as a general strategy for improving the performance of learned models when training and testing data come from different distributions. In this paper, we propose PnP-Ttt as a new method for overcoming distribution shifts in PnP. PnP-TTT uses deep equilibrium learning (DEQ) for optimizing a self-supervised loss at the fixed points of PnP iterations. PnP-TTT can be directly applied on a single test sample to improve the generalization of PnP. We show through simulations that given a sufficient number of measurements, PnP-TTT enables the use of image priors trained on natural images for image reconstruction in magnetic resonance imaging (MRI). 
    more » « less
  5. Plug-and-Play Priors (PnP) and Regularization by Denoising (RED) are widely- used frameworks for solving imaging inverse problems by computing fixed-points of operators combining physical measurement models and learned image priors. While traditional PnP/RED formulations have focused on priors specified using image denoisers, there is a growing interest in learning PnP/RED priors that are end-to-end optimal. The recent Deep Equilibrium Models (DEQ) framework has enabled memory-efficient end-to-end learning of PnP/RED priors by implicitly differentiating through the fixed-point equations without storing intermediate activation values. However, the dependence of the computational/memory complexity of the measurement models in PnP/RED on the total number of measurements leaves DEQ impractical for many imaging applications. We propose ODER as a new strategy for improving the efficiency of DEQ through stochastic approximations of the measurement models. We theoretically analyze ODER giving insights into its ability to approximate the traditional DEQ approach for solving inverse problems. Our numerical results suggest the potential improvements in training/testing complexity due to ODER on three distinct imaging applications. 
    more » « less