skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Holographic particle localization under multiple scattering
We introduce a computational framework that incorporates multiple scattering for large-scale three-dimensional (3-D) particle localization using single-shot in-line holography. Traditional holographic techniques rely on single-scattering models that become inaccurate under high particle densities and large refractive index contrasts. Existing multiple scattering solvers become computationally prohibitive for large-scale problems, which comprise millions of voxels within the scattering volume. Our approach overcomes the computational bottleneck by slicewise computation of multiple scattering under an efficient recursive framework. In the forward model, each recursion estimates the next higher-order multiple scattered field among the object slices. In the inverse model, each order of scattering is recursively estimated by a nonlinear optimization procedure. This nonlinear inverse model is further supplemented by a sparsity promoting procedure that is particularly effective in localizing 3-D distributed particles. We show that our multiple-scattering model leads to significant improvement in the quality of 3-D localization compared to traditional methods based on single scattering approximation. Our experiments demonstrate robust inverse multiple scattering, allowing reconstruction of 100 million voxels from a single 1-megapixel hologram with a sparsity prior. The performance bound of our approach is quantified in simulation and validated experimentally. Our work promises utilization of multiple scattering for versatile large-scale applications.  more » « less
Award ID(s):
1813910
PAR ID:
10099626
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
SPIE journal
Volume:
1
Issue:
3
ISSN:
0036-1860
Page Range / eLocation ID:
036003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We develop a novel algorithm for large-scale holographic reconstruction of 3D particle fields. Our method is based on a multiple-scattering beam propagation method (BPM) combined with sparse regularization that enables recovering dense 3D particles of high refractive index contrast from a single hologram. We show that the BPM-computed hologram generates intensity statistics closely matching with the experimental measurements and provides up to 9× higher accuracy than the single-scattering model. To solve the inverse problem, we devise a computationally efficient algorithm, which reduces the computation time by two orders of magnitude as compared to the state-of-the-art multiple-scattering based technique. We demonstrate the superior reconstruction accuracy in both simulations and experiments under different scattering strengths. We show that the BPM reconstruction significantly outperforms the single-scattering method in particular for deep imaging depths and high particle densities. 
    more » « less
  2. The number of noisy images required for molecular reconstruction in single-particle cryoelectron microscopy (cryo-EM) is governed by the autocorrelations of the observed, randomly oriented, noisy projection images. In this work, we consider the effect of imposing sparsity priors on the molecule. We use techniques from signal processing, optimization, and applied algebraic geometry to obtain theoretical and computational contributions for this challenging nonlinear inverse problem with sparsity constraints. We prove that molecular structures modeled as sums of Gaussians are uniquely determined by the second-order autocorrelation of their projection images, implying that the sample complexity is proportional to the square of the variance of the noise. This theory improves upon the nonsparse case, where the third-order autocorrelation is required for uniformly oriented particle images and the sample complexity scales with the cube of the noise variance. Furthermore, we build a computational framework to reconstruct molecular structures which are sparse in the wavelet basis. This method combines the sparse representation for the molecule with projection-based techniques used for phase retrieval in X-ray crystallography. 
    more » « less
  3. null (Ed.)
    Intensity Diffraction Tomography (IDT) is a new computational microscopy technique providing quantitative, volumetric, large field-of-view (FOV) phase imaging of biological samples. This approach uses computationally efficient inverse scattering models to recover 3D phase volumes of weakly scattering objects from intensity measurements taken under diverse illumination at a single focal plane. IDT is easily implemented in a standard microscope equipped with an LED array source and requires no exogenous contrast agents, making the technology widely accessible for biological research.Here, we discuss model and learning-based approaches for complex 3D object recovery with IDT. We present two model-based computational illumination strategies, multiplexed IDT (mIDT) [1] and annular IDT (aIDT) [2], that achieve high-throughput quantitative 3D object phase recovery at hardware-limited 4Hz and 10Hz volume rates, respectively. We illustrate these techniques on living epithelial buccal cells and Caenorhabditis elegans worms. For strong scattering object recovery with IDT, we present an uncertainty quantification framework for assessing the reliability of deep learning-based phase recovery methods [3]. This framework provides per-pixel evaluation of a neural network predictions confidence level, allowing for efficient and reliable complex object recovery. This uncertainty learning framework is widely applicable for reliable deep learning-based biomedical imaging techniques and shows significant potential for IDT. 
    more » « less
  4. Abstract We consider Bayesian inference for large-scale inverse problems, where computational challenges arise from the need for repeated evaluations of an expensive forward model. This renders most Markov chain Monte Carlo approaches infeasible, since they typically require O ( 1 0 4 ) model runs, or more. Moreover, the forward model is often given as a black box or is impractical to differentiate. Therefore derivative-free algorithms are highly desirable. We propose a framework, which is built on Kalman methodology, to efficiently perform Bayesian inference in such inverse problems. The basic method is based on an approximation of the filtering distribution of a novel mean-field dynamical system, into which the inverse problem is embedded as an observation operator. Theoretical properties are established for linear inverse problems, demonstrating that the desired Bayesian posterior is given by the steady state of the law of the filtering distribution of the mean-field dynamical system, and proving exponential convergence to it. This suggests that, for nonlinear problems which are close to Gaussian, sequentially computing this law provides the basis for efficient iterative methods to approximate the Bayesian posterior. Ensemble methods are applied to obtain interacting particle system approximations of the filtering distribution of the mean-field model; and practical strategies to further reduce the computational and memory cost of the methodology are presented, including low-rank approximation and a bi-fidelity approach. The effectiveness of the framework is demonstrated in several numerical experiments, including proof-of-concept linear/nonlinear examples and two large-scale applications: learning of permeability parameters in subsurface flow; and learning subgrid-scale parameters in a global climate model. Moreover, the stochastic ensemble Kalman filter and various ensemble square-root Kalman filters are all employed and are compared numerically. The results demonstrate that the proposed method, based on exponential convergence to the filtering distribution of a mean-field dynamical system, is competitive with pre-existing Kalman-based methods for inverse problems. 
    more » « less
  5. Summary We consider forecasting a single time series using a large number of predictors in the presence of a possible nonlinear forecast function. Assuming that the predictors affect the response through the latent factors, we propose to first conduct factor analysis and then apply sufficient dimension reduction on the estimated factors to derive the reduced data for subsequent forecasting. Using directional regression and the inverse third-moment method in the stage of sufficient dimension reduction, the proposed methods can capture the nonmonotone effect of factors on the response. We also allow a diverging number of factors and only impose general regularity conditions on the distribution of factors, avoiding the undesired time reversibility of the factors by the latter. These make the proposed methods fundamentally more applicable than the sufficient forecasting method of Fan et al. (2017). The proposed methods are demonstrated both in simulation studies and an empirical study of forecasting monthly macroeconomic data from 1959 to 2016. Also, our theory contributes to the literature of sufficient dimension reduction, as it includes an invariance result, a path to perform sufficient dimension reduction under the high-dimensional setting without assuming sparsity, and the corresponding order-determination procedure. 
    more » « less