Abstract The Wrangell Arc in Alaska (USA) and adjacent volcanic fields in the Yukon provide a long-term record of interrelations between flat-slab subduction of the Yakutat microplate, strike-slip translation along the Denali–Totschunda–Duke River fault system, and magmatism focused within and proximal to a Cretaceous suture zone. Detrital zircon (DZ) U-Pb (n = 2640) and volcanic lithic (DARL) 40Ar/39Ar dates (n = 2771) from 30 modern river sediment samples document the spatial-temporal evolution of Wrangell Arc magmatism, which includes construction of some of the largest Quaternary volcanoes on Earth. Mismatches in DZ and DARL date distributions highlight the impact of variables such as mineral fertility and downstream mixing/dilution on resulting provenance signatures. Geochronologic data document the initiation of Wrangell Arc magmatism at ca. 30–17 Ma along both sides of the Totschunda fault on the north flank of the Wrangell–St. Elias Mountains in Alaska, followed by southeastward progression of magmatism at ca. 17–10 Ma along the Duke River fault in the Yukon. This spatial-temporal evolution is attributable to dextral translation along intra-arc, strike-slip faults and a change in the geometry of the subducting slab (slab curling/steepening). Magmatism then progressed generally westward outboard of the Totschunda and Duke River faults at ca. 13–6more »
Cretaceous to Miocene magmatism, sedimentation, and exhumation within the Alaska Range suture zone: A polyphase reactivated terrane boundary
The Alaska Range suture zone exposes Cretaceous to Quaternary marine
and nonmarine sedimentary and volcanic rocks sandwiched between oceanic
rocks of the accreted Wrangellia composite terrane to the south and older
continental terranes to the north. New U-Pb zircon ages, 40Ar/39Ar, ZHe, and
AFT cooling ages, geochemical compositions, and geological field observations
from these rocks provide improved constraints on the timing of Cretaceous to
Miocene magmatism, sedimentation, and deformation within the collisional
suture zone. Our results bear on the unclear displacement history of the seismically
active Denali fault, which bisects the suture zone. Newly identified
tuffs north of the Denali fault in sedimentary strata of the Cantwell Formation
yield ca. 72 to ca. 68 Ma U-Pb zircon ages. Lavas sampled south of the Denali
fault yield ca. 69 Ma 40Ar/39Ar ages and geochemical compositions typical of
arc assemblages, ranging from basalt-andesite-trachyte, relatively high-K, and
high concentrations of incompatible elements attributed to slab contribution
(e.g., high Cs, Ba, and Th). The Late Cretaceous lavas and bentonites, together
with regionally extensive coeval calc-alkaline plutons, record arc magmatism
during contractional deformation and metamorphism within the suture zone.
Latest Cretaceous volcanic and sedimentary strata are locally overlain by
Eocene Teklanika Formation volcanic rocks with geochemical compositions
transitional between arc and intraplate affinity. New detrital-zircon data from
the modern Teklanika River indicate peak Teklanika volcanism more »
- Publication Date:
- NSF-PAR ID:
- 10099654
- Journal Name:
- Geosphere
- Volume:
- v.15
- Issue:
- 3
- Page Range or eLocation-ID:
- 800-835
- ISSN:
- 1553-040X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Sonya Creek volcanic field (SCVF) contains the oldest in situ volcanic products in the ca. 30 Ma–modern Wrangell Arc (WA) in south-central Alaska, which commenced due to Yakutat microplate subduction initiation. The WA occurs within a transition zone between Aleutian subduction to the west and dextral strike-slip tectonics along the Queen Charlotte–Fairweather and Denali–Duke River fault systems to the east. New 40Ar/39Ar geochronology of bedrock shows that SCVF magmatism occurred from ca. 30–19 Ma. New field mapping, physical volcanology, and major- and trace-element geochemistry, coupled with the 40Ar/39Ar ages and prior reconnaissance work, allows for the reconstruction of SCVF magmatic evolution. Initial SCVF magmatism that commenced at ca. 30 Ma records hydrous, subduction-related, calc-alkaline magmatism and also an adakite-like component that we interpret to represent slab-edge melting of the Yakutat slab. A minor westward shift of volcanism within the SCVF at ca. 25 Ma was accompanied by continued subduction-related magmatism without the adakite-like component (i.e., mantle-wedge melting), represented by ca. 25–20 Ma basaltic-andesite to dacite domes and associated diorites. These eruptions were coeval with another westward shift to anhydrous, transitional-tholeiitic, basaltic-andesite to rhyolite lavas and tuffs of the ca. 23–19 Ma Sonya Creek shield volcano; we attribute these eruptionsmore »
-
Abstract Terrane accretion forms lithospheric-scale fault systems that commonly experience long and complex slip histories. Unraveling the evolution of these suture zone fault systems yields valuable information regarding the relative importance of various upper crustal structures and their linkage through the lithosphere. We present new bedrock geologic mapping and geochronology data documenting the geologic evolution of reactivated shortening structures and adjacent metamorphic rocks in the Alaska Range suture zone at the inboard margin of the Wrangellia composite terrane in the eastern Alaska Range, Alaska, USA. Detrital zircon uranium-lead (U-Pb) age spectra from metamorphic rocks in our study area reveal two distinct metasedimentary belts. The Maclaren schist occupies the inboard (northern) belt, which was derived from terranes along the western margin of North America during the mid- to Late Cretaceous. In contrast, the Clearwater metasediments occupy the outboard (southern) belt, which was derived from arcs built on the Wrangellia composite terrane during the Late Jurassic to Early Cretaceous. A newly discovered locality of Alaska-type zoned ultramafic bodies within the Clearwater metasediments provides an additional link to the Wrangellia composite terrane. The Maclaren and Clearwater metasedimentary belts are presently juxtaposed by the newly identified Valdez Creek fault, which is an upper crustalmore »
-
The Mesozoic–Cenozoic convergent margin history of southern Alaska has been dominated by arc magmatism, terrane accretion, strike-slip fault systems, and possible spreading-ridge subduction. We apply 40Ar/39Ar, apatite fission-track (AFT), and apatite (U-Th)/He (AHe) geochronology and thermochronology to plutonic and volcanic rocks in the southern Talkeetna Mountains of Alaska to document regional magmatism, rock cooling, and inferred exhumation patterns as proxies for the region’s deformation history and to better delineate the overall tectonic history of southern Alaska. High-temperature 40Ar/39Ar thermochronology on muscovite, biotite, and K-feldspar from Jurassic granitoids indicates postemplacement (ca. 158–125 Ma) cooling and Paleocene (ca. 61 Ma) thermal resetting. 40Ar/39Ar whole-rock volcanic ages and 45 AFT cooling ages in the southern Talkeetna Mountains are predominantly Paleocene–Eocene, suggesting that the mountain range has a component of paleotopography that formed during an earlier tectonic setting. Miocene AHe cooling ages within ~10 km of the Castle Mountain fault suggest ~2–3 km of vertical displacement and that the Castle Mountain fault also contributed to topographic development in the Talkeetna Mountains, likely in response to the flat-slab subduction of the Yakutat microplate. Paleocene–Eocene volcanic and exhumation-related cooling ages across southern Alaska north of the Border Ranges fault system are similar and show no S-Nmore »
-
Oblique convergence along strike-slip faults can lead to both distributed and localized deformation. How focused transpressive deformation is both localized and maintained along sub-vertical wrench structures to create high topography and deep exhumation warrants further investigation. The high peak region of the Hayes Range, central Alaska, USA, is bound by two lithospheric scale vertical faults: the Denali fault to the south and Hines Creek fault to the north. The high topography area has peaks over 4000 m and locally has experienced more than 14 km of Neogene exhumation, yet the mountain range is located on the convex side of the Denali fault Mount Hayes restraining bend, where slip partitioning alone cannot account for this zone of extreme exhumation. Through the application of U-Pb zircon, 40Ar/39Ar (hornblende, muscovite, biotite, and K-feldspar), apatite fission-track, and (U-Th)/He geo-thermochronology, we test whether these two parallel, reactivated suture zone structures are working in tandem to vertically extrude the Between the Hines Creek and Denali faults block on the convex side of the Mount Hayes restraining bend. We document that since at least 45 Ma, the Denali fault has been bent and localized in a narrow fault zone (<160 m) with a significant dip-slip component, themore »