Experimental Survey on Power Dissipation of k-mer-Handling Data Structures for Mobile Bioinformatics
Mobile sequencing technologies, including Oxford Nanopore’s MinION, MklC, and SmidgION, are bringing genomics in the palm of a hand, opening unprecedented new opportunities in clinical and ecological research and translational applications. While sequencers now need only a USB outlet and provide on-board preprocessing (e.g., base calling), the main data analysis phases are tied to an available broadband Internet connection and cloud computing. Yet the ubiquity of tablets and smartphones, along with their increase in computational power, makes them a perfect candidate for enabling mobile/edge mobile bioinformatics analytics. Also, in on site experimental settings tablets and smartphones are preferable to standard computers due to resilience to humidity or spills, and ease of sterilization. We here present an experimental study on power dissipation, aiming at reducing the battery consumption that currently impedes the execution of intensive bioinformatics analytics pipelines. In particular, we investigated the effects of assorted data structures (including hash tables, vectors, balanced trees, tries) employed in some of the most common tasks of a bioinformatics pipeline, the k- mer representation and counting. By employing a thermal camera, we show how different k-mer-handling data structures impact the power dissipation on a smartphone, finding that a cache-oblivious data structure reduces power dissipation (up to 26% better than others). In conclusion, the choice of data structures in mobile bioinformatics must consider not only computing efficiency (e.g., succinct data structures to reduce RAM usage), but also power consumption of mobile devices that heavily rely on batteries in order to function.
more »
« less
An official website of the United States government

