skip to main content


Title: Environmental deformations dynamically shift the grid cell spatial metric
In familiar environments, the firing fields of entorhinal grid cells form regular triangular lattices. However, when the geometric shape of the environment is deformed, these time-averaged grid patterns are distorted in a grid scale-dependent and local manner. We hypothesized that this distortion in part reflects dynamic anchoring of the grid code to displaced boundaries, possibly through border cell-grid cell interactions. To test this hypothesis, we first reanalyzed two existing rodent grid rescaling datasets to identify previously unrecognized boundary-tethered shifts in grid phase that contribute to the appearance of rescaling. We then demonstrated in a computational model that boundary-tethered phase shifts, as well as scale-dependent and local distortions of the time-averaged grid pattern, could emerge from border-grid interactions without altering inherent grid scale. Together, these results demonstrate that environmental deformations induce history-dependent shifts in grid phase, and implicate border-grid interactions as a potential mechanism underlying these dynamics.  more » « less
Award ID(s):
1734030
NSF-PAR ID:
10099905
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
eLife
Volume:
7
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A displacement thickness based inflow generation method, for simulation of a developing turbulent boundary layer, is proposed. Following existing rescaling/recycling methods, velocities from a plane sufficiently downstream of the inlet are recycled back and used as the inflow after re-scaling based on inner and outer length-scales. The inner length-scale is based on the viscous length-scale (for smooth walls) or surface specific scales (for rough walls). Prior recycling methods for smooth and rough boundary layers typically use d99 as the outer length-scale. Since d99 is a threshold based quantity, it is strongly dependent on the mean velocity profile and can have large undesired fluctuations, particularly if the profile shape is atypical or unsteady. Here, we propose the use of profile integrated quantities such as the displacement thickness (d1) to obtain a ‘surrogate’ for d99 in order to mitigate the adverse effects of having to determine the outer scale from a point-wise measurement of the mean velocity profile. The outer length- scale at the downstream plane is determined based on the local displacement thickness and higher-order moments of the integrated velocity profile. The inlet displacement thick- ness is fixed at a desired value and the outer length-scale at the inlet is determined through an iterative method. The use of high-order moments of the velocity profile is tested a- priori on DNS data for a developing boundary layer. Also, an initial application to LES over a surface with roughness elements is presented. 
    more » « less
  2. ABSTRACT

    Cosmic reionization was driven by the imbalance between early sources and sinks of ionizing radiation, both of which were dominated by small-scale structure and are thus usually treated in cosmological reionization simulations by subgrid modelling. The recombination rate of intergalactic hydrogen is customarily boosted by a subgrid clumping factor, 〈n2〉/〈n〉2, which corrects for unresolved fluctuations in gas density n on scales below the grid-spacing of coarse-grained simulations. We investigate in detail the impact of this inhomogeneous subgrid clumping on reionization and its observables, as follows: (1) Previous attempts generally underestimated the clumping factor because of insufficient mass resolution. We perform a high-resolution N-body simulation that resolves haloes down to the pre-reionization Jeans mass to derive the time-dependent, spatially varying local clumping factor and a fitting formula for its correlation with local overdensity. (2) We then perform a large-scale N-body and radiative transfer simulation that accounts for this inhomogeneous subgrid clumping by applying this clumping factor-overdensity correlation. Boosting recombination significantly slows the expansion of ionized regions, which delays completion of reionization and suppresses 21 cm power spectra on large scales in the later stages of reionization. (3) We also consider a simplified prescription in which the globally averaged, time-evolving clumping factor from the same high-resolution N-body simulation is applied uniformly to all cells in the reionization simulation, instead. Observables computed with this model agree fairly well with those from the inhomogeneous clumping model, e.g. predicting 21 cm power spectra to within 20 per cent error, suggesting it may be a useful approximation.

     
    more » « less
  3. The plasma membranes of cells are thin viscous sheets in which some transmembrane proteins have two-dimensional mobility and some are immobilized. Previous studies have shown that immobile proteins retard the short-time diffusivity of mobile particles through hydrodynamic interactions and that steric effects of immobile proteins reduce the long-time diffusivity in a model that neglects hydrodynamic interactions. We present a rigorous derivation of the long-time diffusivity of a single mobile protein interacting hydrodynamically and thermodynamically with an array of immobile proteins subject to periodic boundary conditions. This method is based on a finite element method (FEM) solution of the probability density of the mobile protein diffusing with a position-dependent mobility determined through a multipole solution of Stokes equations. The simulated long-time diffusivity in square arrays decreases as the spacing in the array approaches the particle size in a manner consistent with a lubrication analysis. In random arrays, steric effects lead to a percolation threshold volume fraction above which long-time diffusion is arrested. The FEM/multipole approach is used to compute the long-time diffusivity far away from this threshold. An approximate analysis of mobile protein diffusion through a network of pores connected by bonds with resistances determined by the FEM/multipole calculations is then used to explore higher immobile area fractions and to evaluate the finite simulation cell size scaling behaviour of diffusion near the percolation threshold. Surprisingly, the ratio of the long-time diffusivity to the spatially averaged short-time diffusivity in these two-dimensional fixed arrays is higher in the presence of hydrodynamic interactions than in their absence. Finally, the implications of this work are discussed, including the possibility of using the methods developed here to investigate more complex diffusive phenomena observed in cell membranes. 
    more » « less
  4. Abstract

    Place and grid cells in the hippocampal formation are commonly thought to support a unified and coherent cognitive map of space. This mapping mechanism faces a challenge when a navigator is placed in a familiar environment that has been deformed from its original shape. Under such circumstances, many transformations could plausibly serve to map a navigator's familiar cognitive map to the deformed space. Previous empirical results indicate that the firing fields of rodent place and grid cells stretch or compress in a manner that approximately matches the environmental deformation, and human spatial memory exhibits similar distortions. These effects have been interpreted as evidence that reshaping a familiar environment elicits an analogously reshaped cognitive map. However, recent work has suggested an alternative explanation, whereby deformation‐induced distortions of the grid code are attributable to a mechanism that dynamically anchors grid fields to the most recently experienced boundary, thus causing history‐dependent shifts in grid phase. This interpretation raises the possibility that human spatial memory will exhibit similar history‐dependent dynamics. To test this prediction, we taught participants the locations of objects in a virtual environment and then probed their memory for these locations in deformed versions of this environment. Across three experiments with variable access to visual and vestibular cues, we observed the predicted pattern, whereby the remembered locations of objects were shifted from trial to trial depending on the boundary of origin of the participant's movement trajectory. These results provide evidence for a dynamic anchoring mechanism that governs both neuronal firing and spatial memory.

     
    more » « less
  5. Scale-free phase-field approach and corresponding finite element method simulations for multivariant martensitic phase transformation from cubic Si I to tetragonal Si II in a polycrystalline aggregate are presented. Important features of the model are large and very anisotropic transformation strain tensor 𝜺𝑡 = {0.1753; 0.1753; −0.447} and stress-tensor dependent athermal dissipative threshold for transformation, which produce essential challenges for computations. 3D polycrystals with stochastically oriented grains are subjected to uniaxial strain- and stress-controlled loadings under periodic boundary conditions and zero averaged lateral strains. Coupled evolution of discrete martensitic microstructure, volume fractions of martensitic variants and Si II, stress and transformation strain tensors, and texture are presented and analyzed. Macroscopic variables effectively representing multivariant transformational behavior are introduced. Macroscopic stress–strain and transformational behavior for 55 and 910 grains are close. Large transformation strains and grain boundaries lead to huge internal stresses of tens GPa, which affect microstructure evolution and macroscopic behavior. In contrast to a single crystal, the local mechanical instabilities due to phase transformation and negative local tangent modulus are stabilized at the macroscale by arresting/slowing the growth of Si II regions by the grain boundaries. This leads to increasing stress during transformation. The developed methodology can be used for studying similar phase transformations with large transformation strains and for further development by including plastic strain and strain-induced transformations. 
    more » « less