skip to main content


Title: Systemic inequities in introductory physics courses: the impacts of learning assistants
Creating equitable performance outcomes among students is a focus of many instructors and researchers. One focus of this effort is examining disparities in physics student performance across genders, which is a well-established problem. Another less common focus is disparities across racial and ethnic groups, which may have received less attention due to low representation rates making it difficult to identify gaps in their performance. In this investigation we examined associations between Learning Assistant (LA) supported courses and improved equity in student performance. We built Hierarchical Linear Models of student performance to investigate how performance differed by gender and by race/ethnicity and how LAs may have moderated those differences. Data for the analysis came from pre-post concept inventories in introductory mechanics courses collected through the Learning About STEM Student Outcomes (LASSO) platform. Our models show that gaps in performance across genders and races/ethnicities were similar in size and increased from pre to post instruction. LA-support is meaningfully and reliably associated with improvement in overall student performance but not with shifts in within-course performance gaps.  more » « less
Award ID(s):
1525338
NSF-PAR ID:
10099987
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proc. 2017 Physics Education Research Conference
Page Range / eLocation ID:
400 to 403
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study investigates how Learning Assistants (LAs) and related course features are associated with inequities in student learning in introductory university physics courses. 2,868 physics students’ paired pre- and post-test scores on concept inventories from 67 classes in 16 LA Alliance member institutions are examined in this investigation. The concept inventories included the Force Concept Inventory, Force and Motion Conceptual Evaluation, and the Conceptual Survey of Electricity and Magnetism. Our analyses include a multiple linear regression model that examines the impact of student (e.g. gender and race) and course level variables (e.g. presence of LAs and Concept Inventory used) on student learning outcomes (Cohen’s d effect size) across classroom contexts. The presence of LAs was found to either remove or invert the traditional learning gaps between students from dominant and non-dominant populations. Significant differences in student performance were also found across the concept inventories. 
    more » « less
  2. This study investigates how faculty, student, and course features are linked to student outcomes in Learning Assistant (LA) supported courses. Over 4,500 students and 17 instructors from 13 LA Alliance member institutions participated in the study. Each participating student completed an online concept inventory at the start (pre) and end (post) of their term. The physics concept inventories included Force and Motion Concept Evaluation (FMCE) and the Brief Electricity and Magnetism Assessment (BEMA). Concepts inventories from the fields of biology and chemistry were also included. Our analyses utilize hierarchical linear models that nest student level data (e.g. pre/post scores and gender) within course level data (e.g. discipline and course enrollment) to build models that examine student outcomes across institutions and disciplines. We report findings on the connections between students' outcomes and their gender, race, and time spent working with LAs as well as instructors' experiences with LAs. 
    more » « less
  3. This study investigated whether and how Learning Assistant (LA) support is linked to student outcomes in Physics courses nationwide. Paired student concept inventory scores were collected over three semesters from 3,753 students, representing 69 courses, and 40 instructors, from 17 LA Alliance member institutions. Each participating student completed an online concept inventory at the beginning (pre) and end (post) of each term. The physics concept inventories tested included the Force Concept Inventory (FCI), Conceptual Survey of Electricity and Magnetism (CSEM), Force and Motion Concept Evaluation (FMCE) and the Brief Electricity and Magnetism Assessment (BEMA). Across instruments, Cohen’s d effect sizes were 1.4 times higher, on average, for courses supported by LAs compared to courses without LA support. Preliminary findings indicate that physics students' outcomes may be most effective when LA support is utilized in laboratory settings (1.9 times higher than no LA support) in comparison to lecture (1.4 times higher), recitations (1.5 times higher), or unknown uses (1.3 times higher). Additional research will inform LA-implementation best practices across disciplines. 
    more » « less
  4. Higher education literature is replete with evidence that socioeconomic variables and background characteristics inform a myriad of factors related to students’ college life. These include the institutions students choose to attend, their experiences after matriculation, differences in success rates, and even post-graduation outcomes. This is particularly true in engineering, where gaps in academic performance, persistence, and degree attainment still endure despite the litany of federal, institutional, and unit-level resources designed to address socioeconomic disparities. In contrast to much of the literature that takes a deficit-based approach, in this work we presuppose that it is not simply differences in socioeconomic variables and background characteristics that separates highly engaged, successful students in engineering from their less engaged, unsuccessful counterparts. Rather, we suggest that an underlying set of socialization processes by which students become familiar with collegiate engineering education makes students more or less likely to engage in activities that are associated with success. We posit that students’ experiences with these socialization processes – institutional socialization tactics and proactive behaviors – may better explain patterns of participation and outcomes in engineering that go beyond the consideration of access to academic and social resources. Drawing on Weidman’s Undergraduate Socialization framework, we developed a conceptual model for understanding the socialization processes that inform engineering students’ participation in co-curricular activities (specifically professional engineering societies and student design teams). This model is guided by three hypotheses. First, we hypothesize that socioeconomic, academic, and demographic background characteristics combine to uniquely inform students’ experiences with two socialization processes – institutional tactics and proactive behaviors. This, in turn, informs their participation in co-curricular activities, such as professional engineering societies and student design teams. Finally, students who participate in co-curricular engineering activities have different academic and social outcomes than their counterparts who do not participate in co-curricular engineering activities. We also developed a survey instrument based on this model to understand how various socioeconomic variables and background characteristics inform students’ socialization processes and, as a result, their outcomes in engineering. Our goal is to understand the factors that shape students’ socialization into engineering, as well as their development into engineers. Ultimately, our goal is to narrow gaps in participation and success in engineering by addressing negative socialization experiences. 
    more » « less
  5. Evidence has shown that facilitating student-centered learning (SCL) in STEM classrooms enhances student learning and satisfaction [1]–[3]. However, despite increased support from educational and government bodies to incorporate SCL practices [1], minimal changes have been made in undergraduate STEM curriculum [4]. Faculty often teach as they were taught, relying heavily on traditional lecture-based teaching to disseminate knowledge [4]. Though some faculty express the desire to improve their teaching strategies, they feel limited by a lack of time, training, and incentives [4], [5]. To maximize student learning while minimizing instructor effort to change content, courses can be designed to incorporate simpler, less time-consuming SCL strategies that still have a positive impact on student experience. In this paper, we present one example of utilizing a variety of simple SCL strategies throughout the design and implementation of a 4-week long module. This module focused on introductory tissue engineering concepts and was designed to help students learn foundational knowledge within the field as well as develop critical technical skills. Further, the module sought to develop important professional skills such as problem-solving, teamwork, and communication. During module design and implementation, evidence-based SCL teaching strategies were applied to ensure students developed important knowledge and skills within the short timeframe. Lectures featured discussion-based active learning exercises to encourage student engagement and peer collaboration [6]–[8]. The module was designed using a situated perspective, acknowledging that knowing is inseparable from doing [9], and therefore each week, the material taught in the two lecture sessions was directly applied to that week’s lab to reinforce students’ conceptual knowledge through hands-on activities and experimental outcomes. Additionally, the majority of assignments served as formative assessments to motivate student performance while providing instructors with feedback to identify misconceptions and make real-time module improvements [10]–[12]. Students anonymously responded to pre- and post-module surveys, which focused on topics such as student motivation for enrolling in the module, module expectations, and prior experience. Students were also surveyed for student satisfaction, learning gains, and graduate student teaching team (GSTT) performance. Data suggests a high level of student satisfaction, as most students’ expectations were met, and often exceeded. Students reported developing a deeper understanding of the field of tissue engineering and learning many of the targeted basic lab skills. In addition to hands-on skills, students gained confidence to participate in research and an appreciation for interacting with and learning from peers. Finally, responses with respect to GSTT performance indicated a perceived emphasis on a learner-centered and knowledge/community-centered approaches over assessment-centeredness [13]. Overall, student feedback indicated that SCL teaching strategies can enhance student learning outcomes and experience, even over the short timeframe of this module. Student recommendations for module improvement focused primarily on modifying the lecture content and laboratory component of the module, and not on changing the teaching strategies employed. The success of this module exemplifies how instructors can implement similar strategies to increase student engagement and encourage in-depth discussions without drastically increasing instructor effort to re-format course content. Introduction. 
    more » « less