skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Neutron Instruments for Research in Coordination Chemistry: Neutron Instruments for Research in Coordination Chemistry
Award ID(s):
1633870
PAR ID:
10099994
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
European Journal of Inorganic Chemistry
Volume:
2019
Issue:
8
ISSN:
1434-1948
Page Range / eLocation ID:
1065 to 1089
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Hundreds of studies have explored student evolution acceptance because evolution is a core concept of biology that many undergraduate biology students struggle to accept. However, this construct of “evolution acceptance” has been defined and measured in various ways, which has led to inconsistencies across studies and difficulties in comparing results from different studies. Many studies and essays have offered evaluations and perspectives of evolution acceptance instruments, but publications with a focus on consensus building across research teams is still needed. Further, little attention has been paid to how evolution acceptance instruments may be interpreted differently by students with varied religious backgrounds. Funded by a Research Coordination Network in Undergraduate Biology Education grant from the National Science Foundation, we gathered 16 experts from different disciplinary and religious backgrounds to review current evolution acceptance instruments and create a guide to the strengths and weaknesses of these instruments, including appropriate contexts for using these instruments and their potential weaknesses with different religious populations. Finally, in an attempt to move the field forward, we articulated a consensus definition of evolution acceptance that can be used to guide future instrument development. 
    more » « less
  2. This collection includes English- and Spanish-language instruments used for the evaluation of the ShakeAlert Video. 
    more » « less
  3. Environmental chambers have been playing a vital role in atmospheric chemistry research for seven decades. In last decade, oxidation flow reactors (OFR) have emerged as a promising alternative to chambers to study complex multigenerational chemistry. OFR can generate higher-than-ambient concentrations of oxidants via H 2 O, O 2 and O 3 photolysis by low-pressure-Hg-lamp emissions and reach hours to days of equivalent photochemical aging in just minutes of real time. The use of OFR for volatile-organic-compound (VOC) oxidation and secondary-organic-aerosol formation has grown very rapidly recently. However, the lack of detailed understanding of OFR photochemistry left room for speculation that OFR chemistry may be generally irrelevant to the troposphere, since its initial oxidant generation is similar to stratosphere. Recently, a series of studies have been conducted to address important open questions on OFR chemistry and to guide experimental design and interpretation. In this Review, we present a comprehensive picture connecting the chemistries of hydroxyl (OH) and hydroperoxy radicals, oxidized nitrogen species and organic peroxy radicals (RO 2 ) in OFR. Potential lack of tropospheric relevance associated with these chemistries, as well as the physical conditions resulting in it will also be reviewed. When atmospheric oxidation is dominated by OH, OFR conditions can often be similar to ambient conditions, as OH dominates against undesired non-OH effects. One key reason for tropospherically-irrelevant/undesired VOC fate is that under some conditions, OH is drastically reduced while non-tropospheric/undesired VOC reactants are not. The most frequent problems are running experiments with too high precursor concentrations, too high UV and/or too low humidity. On other hand, another cause of deviation from ambient chemistry in OFR is that some tropospherically-relevant non-OH chemistry ( e.g. VOC photolysis in UVA and UVB) is not sufficiently represented under some conditions. In addition, the fate of RO 2 produced from VOC oxidation can be kept relevant to the troposphere. However, in some cases RO 2 lifetime can be too short for atmospherically-relevant RO 2 chemistry, including its isomerization. OFR applications using only photolysis of injected O 3 to generate OH are less preferable than those using both 185 and 254 nm photons (without O 3 injection) for several reasons. When a relatively low equivalent photochemical age (<∼1 d) and high NO are needed, OH and NO generation by organic-nitrite photolysis in the UVA range is preferable. We also discuss how to achieve the atmospheric relevance for different purposes in OFR experimental planning. 
    more » « less
  4. Scientific instruments have long been a vital part of science, paving pathways to remarkable scientific advancements. Such advancements have changed the world both socially and culturally, especially in the past few decades. Students can be introduced to this idea through the concepts of nature of science (NOS): scientific observations are often filtered through apparatus, inferences can be made through observations, and science is a socially and culturally embedded practice. The curriculum often fails to emphasize the role of instruments in scientific practices, even in teaching laboratories. This study uses semistructured interviews to investigate the cognitive (thoughts) and affective (feelings) domains of first-year university students as they relate to scientific instrumentation, including students’ ideas of instruments. First, the study probed how general chemistry students conceptualize scientific instruments in relation to the three NOS notions. Second, students’ practices related to experimental data evaluation were investigated as data collection is a large part of psychomotor learning in laboratory. Third, students’ affective states toward learning about instruments were queried. The interview results suggested that a majority of participants acknowledge some ideas of NOS, while a few students displayed an advanced understanding when discussing scientific instruments and also tended to have higher interest and motivation toward learning about instruments. 
    more » « less