When models are trained for deployment in decision-making in various real-world settings, they are typically trained in batch mode. Historical data is used to train and validate the models prior to deployment. However, in many settings, feedback changes the nature of the training process. Either the learner does not get full feedback on its actions, or the decisions made by the trained model influence what future training data it will see. In this paper, we focus on the problems of recidivism prediction and predictive policing. We present the first algorithms with provable regret for these problems, by showing that both problems (and others like these) can be abstracted into a general reinforcement learning framework called partial monitoring. We also discuss the policy implications of these solutions.
more »
« less
Decision making with limited feedback:Error bounds for predictive policing and recidivism prediction
When models are trained for deployment in decision-making in various real-world settings, they are typically trained in batch mode. Historical data is used to train and validate the models prior to deployment. However, in many settings, \emph{feedback} changes the nature of the training process. Either the learner does not get full feedback on its actions, or the decisions made by the trained model influence what future training data it will see. In this paper, we focus on the problems of recidivism prediction and predictive policing. We present the first algorithms with provable regret for these problems, by showing that both problems (and others like these) can be abstracted into a general reinforcement learning framework called partial monitoring. We also discuss the policy implications of these solutions.
more »
« less
- Award ID(s):
- 1633724
- PAR ID:
- 10100009
- Date Published:
- Journal Name:
- Proceedings of Algorithmic Learning Theory,
- Volume:
- 83
- Page Range / eLocation ID:
- 359-367
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We consider networks, trained via stochastic gradient descent to minimize L2 loss, with the training labels perturbed by independent noise at each iteration. We characterize the behavior of the training dynamics near any parameter vector that achieves zero training error, in terms of an implicit regularization term corresponding to the sum over the datapoints, of the squared L2 of the gradient of the model with respect to the parameter vector, evaluated at each data point. This holds for networks of any connectivity, width,depth, and choice of activation function. We interpret this implicit regularization term for three simple settings: matrix sensing, two layer ReLU networks trained on one-dimensional data, and two layer networks with sigmoid activations trained on a single datapoint. For these settings, we show why this new and general implicit regularization effect drives the networks towards "simple" models.more » « less
-
Machine learning models often perform poorly under subpopulation shifts in the data distribution. Developing methods that allow machine learning models to better generalize to such shifts is crucial for safe deployment in real-world settings. In this paper, we develop a family of group-aware prior (GAP) distributions over neural network parameters that explicitly favor models that generalize well under subpopulation shifts. We design a simple group-aware prior that only requires access to a small set of data with group information and demonstrate that training with this prior yields state-of-the-art performance -- even when only retraining the final layer of a previously trained non-robust model. Group aware-priors are conceptually simple, complementary to existing approaches, such as attribute pseudo labeling and data reweighting, and open up promising new avenues for harnessing Bayesian inference to enable robustness to subpopulation shifts.more » « less
-
Machine learning models often perform poorly under subpopulation shifts in the data distribution. Developing methods that allow machine learning models to better generalize to such shifts is crucial for safe deployment in real-world settings. In this paper, we develop a family of group-aware prior (GAP) distributions over neural network parameters that explicitly favor models that generalize well under subpopulation shifts. We design a simple group-aware prior that only requires access to a small set of data with group information and demonstrate that training with this prior yields state-of-the-art performance -- even when only retraining the final layer of a previously trained non-robust model. Group aware-priors are conceptually simple, complementary to existing approaches, such as attribute pseudo labeling and data reweighting, and open up promising new avenues for harnessing Bayesian inference to enable robustness to subpopulation shifts.more » « less
-
Abstract Many modern computational approaches to classical problems in quantitative finance are formulated as empirical loss minimization (ERM), allowing direct applications of classical results from statistical machine learning. These methods, designed to directly construct the optimal feedback representation of hedging or investment decisions, are analyzed in this framework demonstrating their effectiveness as well as their susceptibility to generalization error. Use of classical techniques shows that over‐training renders trained investment decisions to become anticipative, and proves overlearning for large hypothesis spaces. On the other hand, nonasymptotic estimates based on Rademacher complexity show the convergence for sufficiently large training sets. These results emphasize the importance of synthetic data generation and the appropriate calibration of complex models to market data. A numerically studied stylized example illustrates these possibilities, including the importance of problem dimension in the degree of overlearning, and the effectiveness of this approach.more » « less
An official website of the United States government

