skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Measurement of final-state correlations in neutrino muon-proton mesonless production on hydrocarbon at $langle E_nurangle=3$ GeV
Final-state kinematic imbalances are measured in mesonless production of νμ+A→μ−+p+X in the MINERvA tracker. Initial- and final-state nuclear effects are probed using the direction of the μ−−p transverse momentum imbalance and the initial-state momentum of the struck neutron. Differential cross sections are compared to predictions based on current approaches to medium modeling. These models underpredict the cross section at intermediate intranuclear momentum transfers that generally exceed the Fermi momenta. As neutrino interaction models need to correctly incorporate the effect of the nucleus in order to predict neutrino energy resolution in oscillation experiments, this result points to a region of phase space where additional cross section strength is needed in current models, and demonstrates a new technique that would be suitable for use in fine-grained liquid argon detectors where the effect of the nucleus may be even larger.  more » « less
Award ID(s):
1806849
PAR ID:
10100256
Author(s) / Creator(s):
Date Published:
Journal Name:
Physical review letters
Volume:
121
Issue:
2
ISSN:
1092-0145
Page Range / eLocation ID:
022504
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Double- and single-differential cross sections for inclusive charged-current ν μ -nucleus scattering are reported for the kinematic domain 0 to 2 GeV / c in three-momentum transfer and 0 to 2 GeV in available energy, at a mean ν μ energy of 1.86 GeV. The measurements are based on an estimated 995,760 ν μ charged-current (CC) interactions in the scintillator medium of the NOvA Near Detector. The subdomain populated by 2-particle-2-hole (2p2h) reactions is identified by the cross section excess relative to predictions for ν μ -nucleus scattering that are constrained by a data control sample. Models for 2-particle-2-hole processes are rated by χ 2 comparisons of the predicted-versus-measured ν μ CC inclusive cross section over the full phase space and in the restricted subdomain. Shortfalls are observed in neutrino generator predictions obtained using the theory-based València and SuSAv2 2p2h models. Published by the American Physical Society2025 
    more » « less
  2. We present measurements of the cross section for antineutrino charged-current quasielasticlike scattering on hydrocarbon using the medium energy NuMI wide-band neutrino beam peaking at antineutrino energy hE¯νi ∼ 6 GeV. The measurements are presented as a function of the longitudinal momentum (pjj) and transverse momentum (pT) of the final state muon. This work complements our previously reported high statistics measurement in the neutrino channel and extends the previous antineutrino measurement made in a low energy beam at hE¯νi ∼ 3.5 GeV out to pT of 2.5 GeV=c. Current theoretical models do not completely describe the data in this previously unexplored high pT region. The single differential cross section as a function of four-momentum transfer (Q2 QE) now extends to 4 GeV2 with high statistics. The cross section as a function of Q2 QE shows that the tuned simulations developed by the MINERvA Collaboration that agreed well with the low energy beam measurements do not agree as well with the medium energy beam measurements. Newer neutrino interaction models such as the GENIE v3 tunes are better able to simulate the high Q2 QE region. 
    more » « less
  3. null (Ed.)
    We have measured new observables based on the final state kinematic imbalances in the mesonless production of ν μ + A → μ − + p + X in the MINERνA tracker. Components of the muon-proton momentum imbalances parallel ( δ p Ty ) and perpendicular ( δ p Tx ) to the momentum transfer in the transverse plane are found to be sensitive to the nuclear effects such as Fermi motion, binding energy, and non-quasielastic (QE) contributions. The QE peak location in δ p Ty is particularly sensitive to the binding energy. Differential cross sections are compared to predictions from different neutrino interaction models. The Fermi gas models presented in this study cannot simultaneously describe features such as QE peak location, width, and the non-QE events contributing to the signal process. Correcting the genie’s binding energy implementation according to theory causes better agreement with data. Hints of proton left-right asymmetry are observed in δ p Tx . Better modeling of the binding energy can reduce the bias in neutrino energy reconstruction, and these observables can be applied in current and future experiments to better constrain nuclear effects. 
    more » « less
  4. We have measured new observables based on the final state kinematic imbalances in the mesonless production of ν μ + A → μ − + p + X in the MINERνA tracker. Components of the muon-proton momentum imbalances parallel ( δ p Ty ) and perpendicular ( δ p Tx ) to the momentum transfer in the transverse plane are found to be sensitive to the nuclear effects such as Fermi motion, binding energy, and non-quasielastic (QE) contributions. The QE peak location in δ p Ty is particularly sensitive to the binding energy. Differential cross sections are compared to predictions from different neutrino interaction models. The Fermi gas models presented in this study cannot simultaneously describe features such as QE peak location, width, and the non-QE events contributing to the signal process. Correcting the genie’s binding energy implementation according to theory causes better agreement with data. Hints of proton left-right asymmetry are observed in δpTx. Better modeling of the binding energy can reduce the bias in neutrino energy reconstruction, and these observables can be applied in current and future experiments to better constrain nuclear effects. 
    more » « less
  5. We have measured new observables based on the final state kinematic imbalances in the mesonless production of νμ+A→μ-+p+X in the MINERνA tracker. Components of the muon-proton momentum imbalances parallel (δpTy) and perpendicular (δpTx) to the momentum transfer in the transverse plane are found to be sensitive to the nuclear effects such as Fermi motion, binding energy, and non-quasielastic (QE) contributions. The QE peak location in δpTy is particularly sensitive to the binding energy. Differential cross sections are compared to predictions from different neutrino interaction models. The Fermi gas models presented in this study cannot simultaneously describe features such as QE peak location, width, and the non-QE events contributing to the signal process. Correcting the genie’s binding energy implementation according to theory causes better agreement with data. Hints of proton left-right asymmetry are observed in δpTx. Better modeling of the binding energy can reduce the bias in neutrino energy reconstruction, and these observables can be applied in current and future experiments to better constrain nuclear effects. 
    more » « less