skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Thresholdless transition to coherent emission at telecom wavelengths from coaxial nanolasers
The ongoing miniaturization of semiconductor lasers has enabled ultra-low threshold devices and even provided a path to approach thresholdless lasing with linear input-output characteristics. Such nanoscale lasers have initiated a discourse on the origin of the physical mechanisms involved and their boundaries, such as the required photon number, the importance of optimized light confinement in a resonator and mode-density enhancement. Here, we investigate high-β metal-clad coaxial nanolasers, which facilitate thresholdless lasing. We experimentally and theoretically investigate both the conventional lasing characteristics, as well as the photon statistics of the emitted light. While the former lacks adequate information to determine the threshold to coherent radiation, the latter reveals a finite threshold pump power. Our work clearly highlights an important and often misunderstood aspect of high-β lasers, namely that a thresholdless laser does have a finite threshold pump power and must not be confused with a hypothetical zero threshold laser.  more » « less
Award ID(s):
1805200
PAR ID:
10100332
Author(s) / Creator(s):
Date Published:
Journal Name:
Applied physics
ISSN:
0340-3793
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study examines the lasing performance of optically pumped wurtzite‐phase InP nanowire (NW) photonic crystal surface‐emitting lasers (PCSELs) with the goal of optimizing the cavity design for low‐threshold lasing. By varying the photonic crystal lattice constant and NW diameter, this study systematically investigates the threshold power and the threshold gain. Using finite‐difference time‐domain simulations and gain spectra modeling, this study finds that the lowest pump threshold occurs when the cavity resonance energy is slightly above the spontaneous emission maximum energy due to high differential gain. Furthermore, PCSEL structures with an apothem‐to‐pitch ratio of ≈0.15 are advantageous because they provide increased confinement factors, resulting in the lowest lasing threshold and high laser output. This study paves the path toward low‐threshold NW PCSEL designs for photonic integrated circuits. 
    more » « less
  2. Abstract Recent studies on exceptional points (EPs) in non-Hermitian optical systems have revealed unique traits, including unidirectional invisibility, chiral mode switching and laser self-termination. In systems featuring gain/loss components, EPs are commonly accessed below the lasing threshold, i.e., in the linear regime. In this work, we experimentally demonstrate that EP singularities in coupled semiconductor nanolasers can be accessed above the lasing threshold, where they become branch points of a nonlinear dynamical system. Contrary to the common belief that unavoidable cavity detuning impedes the formation of EPs, here we demonstrate that such detuning is necessary for compensating the carrier-induced frequency shift, hence restoring the EP. Furthermore, we find that the pump imbalance at lasing EPs varies with the total pump power, enabling their continuous tracking. This work uncovers the unstable nature of EPs above laser threshold in coupled semiconductor lasers, offering promising opportunities for the realization of self-pulsing nanolaser devices and frequency combs. 
    more » « less
  3. Abstract High‐bandwidth metallic coaxial nanolasers are of high interest to investigate laser physics such as thresholdless coherence transitions, and have a large variety of promising applications enabled by their ultrasmall size and large spectral bandwidth. Optical coherence properties are commonly characterized in Hanbury‐Brown and Twiss experiments. However, those are difficult to perform in broadband lasers when the coherence time is an order of magnitude shorter than the temporal resolution of the single‐photon detectors, thus requiring significant spectral filtering. This paper demonstrates a new approach in investigating the temporal dynamics of the photon statistics associated with the nanolaser emission, obtained without the requirement of spectral filtering. While optically pumping the nanolasers with nanosecond pulses, time‐resolved second‐order coherence properties are evaluated over the time duration of the pump pulse. Coherence transitions from thermal emission to lasing are observed in the gathered time‐resolved photon statistics, linked to the temporal change in optical power of the nanosecond pump pulses. As nanolasers show better performance for the pulsed pumping scheme, the temporal envelope modulation of these pulses results in varying degrees of coherence within the nanolaser pulse envelope. This approach can also be readily applied to characterize a large variety of broadband lasers. 
    more » « less
  4. Exciton-polariton lasers are a promising source of coherent light for low-energy applications due to their low-threshold operation. However, a detailed experimental study of their spectral purity, which directly affects their coherence properties, is still missing. Here, we present a high-resolution spectroscopic investigation of the energy and linewidth of an exciton-polariton laser in the single-mode regime, which derives its coherent emission from an optically pumped and confined exciton-polariton condensate. We report an ultra-narrow linewidth of 56 MHz or 0.24 µeV, corresponding to a coherence time of 5.7 ns. The narrow linewidth is consistently achieved by using an exciton-polariton condensate with a high photonic content confined in an optically induced trap. Contrary to previous studies, we show that the excitonic reservoir created by the pump and responsible for creating the trap does not strongly affect the emission linewidth as long as the condensate is trapped and the pump power is well above the condensation (lasing) threshold. The long coherence time of the exciton-polariton system uncovered here opens up opportunities for manipulating its macroscopic quantum state, which is essential for applications in classical and quantum computing. 
    more » « less
  5. Abstract Large-area lasers are practical for generating high output powers. However, this often comes at the expense of lower beam quality due to the introduction of higher-order modes. Here, we experimentally demonstrate a new type of electrically pumped, large-area edge-emitting lasers that exhibit a high power emission (∼0.4 W) and a high-quality beam (M 2 ∼1.25). These favorable operational characteristics are enabled by establishing a quasi PT-symmetry between the second-order mode of a large area two-mode laser cavity and that of a single-mode auxiliary partner cavity, i.e., by implementing a partial isospectrality between the two coupled cavities. This in turn enlarges the effective volume of the higher-order modes. As a result, a selective pump applied via current injection into the main laser cavity can provide a stronger modal gain to the fundamental mode, and thus lead to lasing in the single mode regime after filtering out higher order transverse modes. The reported experimental results confirm this intuitive picture and are in good agreement with both theoretical and numerical analysis. Above all, the employed material platform and fabrication process are compatible with the industrial standards of semiconductor lasers. This work provides the first clear demonstration, beyond previous proof-of-concept studies, of the utility of PT-symmetry in building laser geometries with enhanced performance and, at the same time, useful output power levels and emission characteristics. 
    more » « less