skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Life-Stage Differences in Microhabitat Use by Hellbenders (Cryptobranchus alleganiensis)
Hellbenders (Cryptobranchus alleganiensis) are long-lived, fully aquatic salamanders that inhabit cool, well-oxygenated streams and rivers in the eastern United States. Although once abundant, C. alleganiensis populations have experienced major declines across the historical range. Habitat degradation, siltation, aquatic contaminants, and infectious diseases are commonly suggested as contributors to these declines. Although Tennessee provides areas of high-quality habitat for C. alleganiensis, microhabitat differences among life stages are not well documented. We evaluated microhabitat use of larval, subadult, and adult C. alleganiensis at three streams in east Tennessee by comparing sites occupied by C. alleganiensis to random sites within each stream. We used multivariate analysis to evaluate microhabitat use differences among larval, subadult, and adult C. alleganiensis. We completed habitat assessments for 60 individuals. We detected an association between C. alleganiensis presence (regardless of life stage) and the percentage of large rock, the percentage of low embedded rocks, and the number of rocks above 500 mm. Furthermore, the volume of cover rock, the number of rocks above 500 mm, the distance to bank, and the percentage of low embedded rocks, gravel, and sand were the most important microhabitat attributes to discriminate life-stage distributions. Overall, our analyses identify microhabitat attributes that are potentially important for long-term C. alleganiensis conservation and provide guidance for stream protection and restoration practices that might mitigate sedimentation and habitat degradation in impacted streams.  more » « less
Award ID(s):
1831988
PAR ID:
10100477
Author(s) / Creator(s):
Date Published:
Journal Name:
Herpetologica
Volume:
75
Issue:
1
ISSN:
0018-0831
Page Range / eLocation ID:
21-29
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Assessing direct fitness effects of individual genetic diversity is challenging due to the intensive and long‐term data needed to quantify survival and reproduction in the wild. But resolving these effects is necessary to determine how inbreeding and outbreeding influence eco‐evolutionary processes. We used 8 years of capture–recapture data and single nucleotide polymorphism genotypes for 1906 individuals to test for effects of individual heterozygosity on stage‐specific survival probabilities in the salamanderGyrinophilus porphyriticus. The life cycle ofG. porphyriticusincludes an aquatic larval stage followed by metamorphosis into a semi‐aquatic adult stage. In our study populations, the larval stage lasts 6–10 years, metamorphosis takes several months, and lifespan can reach 20 years. Previous studies showed that metamorphosis is a sensitive life stage, leading us to predict that fitness effects of individual heterozygosity would occur during metamorphosis. Consistent with this prediction, monthly probability of survival during metamorphosis declined with multi‐locus heterozygosity (MLH), from 0.38 at the lowest MLH (0.10) to 0.06 at the highest MLH (0.38), a reduction of 84%. Body condition of larvae also declined significantly with increasing MLH. These relationships were consistent in the three study streams. With evidence of localised inbreeding within streams, these results suggest that outbreeding disrupts adaptations in pre‐metamorphic and metamorphic individuals to environmental gradients along streams, adding to evidence that headwater streams are hotspots of microgeographic adaptation. Our results also underscore the importance of incorporating life history in analyses of the fitness effects of individual genetic diversity and suggest that metamorphosis and similar discrete life stage transitions may be critical periods of viability selection. 
    more » « less
  2. Abstract Detecting declines and quantifying extinction risk of long‐lived, highly fecund vertebrates, including fishes, reptiles, and amphibians, can be challenging. In addition to the false notion that large clutches always buffer against population declines, the imperiled status of long‐lived species can often be masked by extinction debt, wherein adults persist on the landscape for several years after populations cease to be viable. Here we develop a demographic model for the eastern hellbender (Cryptobranchus alleganiensis), an imperiled aquatic salamander with paternal care. We examined the individual and interactive effects of three of the leading threats hypothesized to contribute to the species' demise: habitat loss due to siltation, high rates of nest failure, and excess adult mortality caused by fishing and harvest. We parameterized the model using data on their life history and reproductive ecology to model the fates of individual nests and address multiple sources of density‐dependent mortality under both deterministic and stochastic environmental conditions. Our model suggests that high rates of nest failure observed in the field are sufficient to drive hellbender populations toward a geriatric age distribution and eventually to localized extinction but that this process takes decades. Moreover, the combination of limited nest site availability due to siltation, nest failure, and stochastic adult mortality can interact to increase the likelihood and pace of extinction, which was particularly evident under stochastic scenarios. Density dependence in larval survival and recruitment can severely hamper a population's ability to recover from declines. Our model helps to identify tipping points beyond which extinction becomes certain and management interventions become necessary. Our approach can be generalized to understand the interactive effects of various threats to the extinction risk of other long‐lived vertebrates. As we face unprecedented rates of environmental change, holistic approaches incorporating multiple concurrent threats and their impacts on different aspects of life history will be necessary to proactively conserve long‐lived species. 
    more » « less
  3. Secretive species are difficult to study and often of conservation concern, as exemplified by the Eastern Hellbender (Cryptobranchus alleganiensis). Traditional methods for sampling Hellbenders involves moving rocks, which damages essential habitat. Use and installation of artificial shelters has made studying Hellbenders less dangerous for the animal and less disruptive to stream habitat; however, researchers using shelters generally capture occupying animals to identify them. We tested the ability of a submersible portable Passive Integrated Transponder (PIT) antenna to accurately detect PIT-tagged Hellbenders in shelters. We tested the effects of the presence and depth of cover rocks on top of shelters, PIT tag location within the shelter, and tag orientation on detection efficiency of Hellbenders. For the 32 shelters occupied by a tagged individual with cover rocks in place, the scanner accurately detected 31% of the animals versus 88% when cover rocks were removed. The detection efficiency of the scanner dropped below 50% once cover rock depth exceeded 11 cm. Tags placed near the interface of the entrance tunnel and chamber, or along the chamber walls, had higher detection efficiencies than those in other locations within the shelter. Vertically oriented tags were 18% more likely to be detected than horizontally oriented tags. Our study demonstrates that while this technology has certain limitations, it shows potent 
    more » « less
  4. Changes in the amount, intensity, and timing of precipitation are increasing hydrologic variability in many regions, but we have little understanding of how these changes are affecting freshwater species. Stream-breeding amphibians—a diverse group in North America—may be particularly sensitive to hydrologic variability during aquatic larval and metamorphic stages. Here, we tested the prediction that hydrologic variability in streams decreases survival through metamorphosis in the salamander Gyrinophilus porphyriticus , reducing recruitment to the adult stage. Using a 20-y dataset from Merrill Brook, a stream in northern New Hampshire, we show that abundance of G. porphyriticus adults has declined by ∼50% since 1999, but there has been no trend in larval abundance. We then tested whether hydrologic variability during summers influences survival through metamorphosis, using capture–mark–recapture data from Merrill Brook (1999 to 2004) and from 4 streams in the Hubbard Brook Experimental Forest (2012 to 2014), also in New Hampshire. At both sites, survival through metamorphosis declined with increasing variability of stream discharge. These results suggest that hydrologic variability reduces the demographic resilience and adaptive capacity of G. porphyriticus populations by decreasing recruitment of breeding adults. They also provide insight on how increasing hydrologic variability is affecting freshwater species, and on the broader effects of environmental variability on species with vulnerable metamorphic stages. 
    more » « less
  5. We lack a strong understanding of how organisms with complex life histories respond to climate variation. Many stream-associated species have multi-stage life histories that are likely to influence the demographic consequences of floods and droughts. However, tracking stage specific demographic responses requires high-resolution, long-term data that are rare. We used eight years of capture-recapture data for the headwater stream salamander Gyrinophilus porphyriticus to quantify the effects of flooding and drying magnitude on stage-specific vital rates and population growth. Drying reduced larval recruitment but increased the probability of metamorphosis (i.e., adult recruitment). Flooding reduced adult recruitment but had no effect on larval recruitment. Larval and adult survival declined with flooding but were unaffected by drying. Annual population growth rates (lambda, ) declined with flooding and drying. Lambda also declined over the study period (2012 – 2021), although mean  was 1.0 over this period. Our results indicate that G. porphyriticus populations are resilient to hydrologic variation due to compensatory effects on recruitment of larvae vs. adults (i.e., reproduction vs. metamorphosis). Complex life cycles may enable this resilience to climate variation by creating opportunities for compensatory demographic responses across stages. However, more frequent and intense hydrologic variation in the latter half of this study contributed to a decline in  over time, suggesting that increasing environmental variability poses a threat even when demographic compensation occurs. 
    more » « less