Abstract Assessing direct fitness effects of individual genetic diversity is challenging due to the intensive and long‐term data needed to quantify survival and reproduction in the wild. But resolving these effects is necessary to determine how inbreeding and outbreeding influence eco‐evolutionary processes. We used 8 years of capture–recapture data and single nucleotide polymorphism genotypes for 1906 individuals to test for effects of individual heterozygosity on stage‐specific survival probabilities in the salamanderGyrinophilus porphyriticus. The life cycle ofG. porphyriticusincludes an aquatic larval stage followed by metamorphosis into a semi‐aquatic adult stage. In our study populations, the larval stage lasts 6–10 years, metamorphosis takes several months, and lifespan can reach 20 years. Previous studies showed that metamorphosis is a sensitive life stage, leading us to predict that fitness effects of individual heterozygosity would occur during metamorphosis. Consistent with this prediction, monthly probability of survival during metamorphosis declined with multi‐locus heterozygosity (MLH), from 0.38 at the lowest MLH (0.10) to 0.06 at the highest MLH (0.38), a reduction of 84%. Body condition of larvae also declined significantly with increasing MLH. These relationships were consistent in the three study streams. With evidence of localised inbreeding within streams, these results suggest that outbreeding disrupts adaptations in pre‐metamorphic and metamorphic individuals to environmental gradients along streams, adding to evidence that headwater streams are hotspots of microgeographic adaptation. Our results also underscore the importance of incorporating life history in analyses of the fitness effects of individual genetic diversity and suggest that metamorphosis and similar discrete life stage transitions may be critical periods of viability selection.
more »
« less
Life-Stage Differences in Microhabitat Use by Hellbenders (Cryptobranchus alleganiensis)
Hellbenders (Cryptobranchus alleganiensis) are long-lived, fully aquatic salamanders that inhabit cool, well-oxygenated streams and rivers in the eastern United States. Although once abundant, C. alleganiensis populations have experienced major declines across the historical range. Habitat degradation, siltation, aquatic contaminants, and infectious diseases are commonly suggested as contributors to these declines. Although Tennessee provides areas of high-quality habitat for C. alleganiensis, microhabitat differences among life stages are not well documented. We evaluated microhabitat use of larval, subadult, and adult C. alleganiensis at three streams in east Tennessee by comparing sites occupied by C. alleganiensis to random sites within each stream. We used multivariate analysis to evaluate microhabitat use differences among larval, subadult, and adult C. alleganiensis. We completed habitat assessments for 60 individuals. We detected an association between C. alleganiensis presence (regardless of life stage) and the percentage of large rock, the percentage of low embedded rocks, and the number of rocks above 500 mm. Furthermore, the volume of cover rock, the number of rocks above 500 mm, the distance to bank, and the percentage of low embedded rocks, gravel, and sand were the most important microhabitat attributes to discriminate life-stage distributions. Overall, our analyses identify microhabitat attributes that are potentially important for long-term C. alleganiensis conservation and provide guidance for stream protection and restoration practices that might mitigate sedimentation and habitat degradation in impacted streams.
more »
« less
- Award ID(s):
- 1831988
- PAR ID:
- 10100477
- Date Published:
- Journal Name:
- Herpetologica
- Volume:
- 75
- Issue:
- 1
- ISSN:
- 0018-0831
- Page Range / eLocation ID:
- 21-29
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Changes in the amount, intensity, and timing of precipitation are increasing hydrologic variability in many regions, but we have little understanding of how these changes are affecting freshwater species. Stream-breeding amphibians—a diverse group in North America—may be particularly sensitive to hydrologic variability during aquatic larval and metamorphic stages. Here, we tested the prediction that hydrologic variability in streams decreases survival through metamorphosis in the salamander Gyrinophilus porphyriticus , reducing recruitment to the adult stage. Using a 20-y dataset from Merrill Brook, a stream in northern New Hampshire, we show that abundance of G. porphyriticus adults has declined by ∼50% since 1999, but there has been no trend in larval abundance. We then tested whether hydrologic variability during summers influences survival through metamorphosis, using capture–mark–recapture data from Merrill Brook (1999 to 2004) and from 4 streams in the Hubbard Brook Experimental Forest (2012 to 2014), also in New Hampshire. At both sites, survival through metamorphosis declined with increasing variability of stream discharge. These results suggest that hydrologic variability reduces the demographic resilience and adaptive capacity of G. porphyriticus populations by decreasing recruitment of breeding adults. They also provide insight on how increasing hydrologic variability is affecting freshwater species, and on the broader effects of environmental variability on species with vulnerable metamorphic stages.more » « less
-
We lack a strong understanding of how organisms with complex life histories respond to climate variation. Many stream-associated species have multi-stage life histories that are likely to influence the demographic consequences of floods and droughts. However, tracking stage specific demographic responses requires high-resolution, long-term data that are rare. We used eight years of capture-recapture data for the headwater stream salamander Gyrinophilus porphyriticus to quantify the effects of flooding and drying magnitude on stage-specific vital rates and population growth. Drying reduced larval recruitment but increased the probability of metamorphosis (i.e., adult recruitment). Flooding reduced adult recruitment but had no effect on larval recruitment. Larval and adult survival declined with flooding but were unaffected by drying. Annual population growth rates (lambda, ) declined with flooding and drying. Lambda also declined over the study period (2012 – 2021), although mean was 1.0 over this period. Our results indicate that G. porphyriticus populations are resilient to hydrologic variation due to compensatory effects on recruitment of larvae vs. adults (i.e., reproduction vs. metamorphosis). Complex life cycles may enable this resilience to climate variation by creating opportunities for compensatory demographic responses across stages. However, more frequent and intense hydrologic variation in the latter half of this study contributed to a decline in over time, suggesting that increasing environmental variability poses a threat even when demographic compensation occurs.more » « less
-
Abstract Increases to summer Arctic rainfall and tundra thermal degradation are altering hydrological cycling in coastal watersheds with implications for carbon (C) cycling and transport of C to the atmosphere and coast. Arctic riverine research has focused on large rivers; however, small streams contribute significantly to vertical and longitudinal carbon dioxide (CO2) fluxes. Despite the well‐established connection between hydrology and biogeochemistry, the impact of extreme rainfall events on Arctic aquatic C cycling remains a knowledge gap. This study characterized how hydrology, biogeochemistry, and geomorphology control the supply of CO2to low order streams and their propensity to act as atmospheric CO2sources. We characterize biogeochemical and hydrologic processes in unique reaches from a beaded stream and stream impacted by thermal erosion. Rainfall and its resulting increases to terrestrial‐aquatic connectivity drove the movement of CO2and biodegradable dissolved organic C (BDOC) from soils into streams, however, BDOC mineralization only contributed a small portion of surface CO2fluxes. Rain events likely stimulated stream benthic respiration, which led to CO2contributions from net ecosystem production often exceeding surface CO2fluxes and downstream CO2transport. In addition, thermal degradation played a role in terrestrial‐aquatic connectivity of the streams. The erosion‐affected stream had inconsistent and smaller inputs of CO2, had weaker heterotrophic conditions, and smaller CO2emissions. Understanding how hydrologic regime, influenced by late summer rain events and stream morphology, controls the transport of CO2and metabolism in small tundra streams will help improve predictions of landscape scale CO2emissions from these critically understudied systems.more » « less
-
Abstract Source–sink patch dynamics occur when movement from sources stabilizes sinks by compensating for low local vital rates. The mechanisms underlying source–sink dynamics may be complicated in species that undergo transitions between discrete life stages, particularly when stages have overlapping habitat requirements and similar movement abilities. In these species, for example, the demographic effects of movement by one stage may augment or offset the effects of movement by another stage. We used a stream salamander system to investigate patch dynamics within this form of complex life history. Specifically, we tested the hypothesis that the salamanderGyrinophilus porphyriticusexperiences source–sink dynamics in riffles and pools, the dominant geomorphic patch types in headwater streams. We estimated stage‐specific survival probabilities in riffles and pools and stage‐specific movement probabilities between the two patch types using 8 years of capture–recapture data on 4491 individuals, including premetamorphic larvae and postmetamorphic adults. We then incorporated survival and movement probabilities into a stage‐structured, two‐patch model to determine the demographic interactions between riffles and pools. Monthly survival probabilities of both stages were higher in pools than in riffles. Larvae were more likely to move from riffles to pools, but adults were more likely to move from pools to riffles, despite experiencing much lower survival in riffles. In simulations, eliminating interpatch movements by both stages indicated that riffles are sinks that rely on immigration from pools for stability. Allowing only larvae to move stabilized both patch types, but allowing only adults to move destabilized pools due to the demographic cost of adult emigration. These results indicated that larval movement not only stabilizes riffles, but also offsets the destabilizing effects of maladaptive adult movement. Similar patch dynamics may emerge in any structured population in which movement and local vital rates differ by age, size, or stage. Addressing these forms of internal demographic structure in patch dynamics analyses will help to refine and advance general understanding of spatial ecology.more » « less
An official website of the United States government

