skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: APE-Gen: A Fast Method for Generating Ensembles of Bound Peptide-MHC Conformations
The Class I Major Histocompatibility Complex (MHC) is a central protein in immunology as it binds to intracellular peptides and displays them at the cell surface for recognition by T-cells. The structural analysis of bound peptide-MHC complexes (pMHCs) holds the promise of interpretable and general binding prediction (i.e., testing whether a given peptide binds to a given MHC). However, structural analysis is limited in part by the difficulty in modelling pMHCs given the size and flexibility of the peptides that can be presented by MHCs. This article describes APE-Gen (Anchored Peptide-MHC Ensemble Generator), a fast method for generating ensembles of bound pMHC conformations. APE-Gen generates an ensemble of bound conformations by iterated rounds of (i) anchoring the ends of a given peptide near known pockets in the binding site of the MHC, (ii) sampling peptide backbone conformations with loop modelling, and then (iii) performing energy minimization to fix steric clashes, accumulating conformations at each round. APE-Gen takes only minutes on a standard desktop to generate tens of bound conformations, and we show the ability of APE-Gen to sample conformations found in X-ray crystallography even when only sequence information is used as input. APE-Gen has the potential to be useful for its scalability (i.e., modelling thousands of pMHCs or even non-canonical longer peptides) and for its use as a flexible search tool. We demonstrate an example for studying cross-reactivity.  more » « less
Award ID(s):
1738990
PAR ID:
10100536
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Molecules
Volume:
24
Issue:
5
ISSN:
1420-3049
Page Range / eLocation ID:
881
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The ability to accurately identify peptide ligands for a given major histocompatibility complex class I (MHC-I) molecule has immense value for targeted anticancer therapeutics. However, the highly polymorphic nature of the MHC-I protein makes universal prediction of peptide ligands challenging due to lack of experimental data describing most MHC-I variants. To address this challenge, we have developed a deep convolutional neural network, HLA-Inception, capable of predicting MHC-I peptide binding motifs using electrostatic properties of the MHC-I binding pocket. By approaching this immunological issue using molecular biophysics, we measure the impact of sidechain arrangement and topology on peptide binding, feature not captured by sequence-based MHC-I prediction methods. Through a combination of molecular modeling and simulation, 5821 MHC-I alleles were modeled, providing extensive coverage across human populations. Predicted peptide binding motifs fell into distinct clusters, each defined with different degrees of submotif heterogeneity. Peptide binding scores generated by HLA-Inception are strongly correlated with quantitative MHC-I binding data, indicating predicted peptides can be ranked, both within and between alleles. HLA-inception also showed high precision when predicting naturally presented peptides and can be used for rapid proteome-scale MHC-I peptide binding predictions. Finally, we show that the binding pocket diversity measured by HLA inception predicts response to checkpoint blockade. Citation Format: Eric A. Wilson, John Kevin Cava, Diego Chowell, Abhishek Singharoy, Karen S. Anderson. Protein structure-based modeling to improve MHC class I epitope predictions. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 5376. 
    more » « less
  2. Major histocompatibility complex Class I (MHC-I) molecules bind to peptides derived from intracellular antigens and present them on the surface of cells, allowing the immune system (T cells) to detect them. Elucidating the process of this presentation is essential for regulation and potential manipulation of the cellular immune system. Predicting whether a given peptide binds to an MHC molecule is an important step in the above process and has motivated the introduction of many computational approaches to address this problem. NetMHCPan, a pan-specific model for predicting binding of peptides to any MHC molecule, is one of the most widely used methods which focuses on solving this binary classification problem using shallow neural networks. The recent successful results of Deep Learning (DL) methods, especially Natural Language Processing (NLP-based) pretrained models in various applications, including protein structure determination, motivated us to explore their use in this problem. Specifically, we consider the application of deep learning models pretrained on large datasets of protein sequences to predict MHC Class I-peptide binding. Using the standard performance metrics in this area, and the same training and test sets, we show that our models outperform NetMHCpan4.1, currently considered as the-state-of-the-art. 
    more » « less
  3. Peptide binding to major histocompatibility complexes (MHCs) is a central component of the immune system, and understanding the mechanism behind stable peptide–MHC binding will aid the development of immunotherapies. While MHC binding is mostly influenced by the identity of the so-called anchor positions of the peptide, secondary interactions from nonanchor positions are known to play a role in complex stability. However, current MHC-binding prediction methods lack an analysis of the major conformational states and might underestimate the impact of secondary interactions. In this work, we present an atomically detailed analysis of peptide–MHC binding that can reveal the contributions of any interaction toward stability. We propose a simulation framework that uses both umbrella sampling and adaptive sampling to generate a Markov state model (MSM) for a coronavirus-derived peptide (QFKDNVILL), bound to one of the most prevalent MHC receptors in humans (HLA-A24:02). While our model reaffirms the importance of the anchor positions of the peptide in establishing stable interactions, our model also reveals the underestimated importance of position 4 (p4), a nonanchor position. We confirmed our results by simulating the impact of specific peptide mutations and validated these predictions through competitive binding assays. By comparing the MSM of the wild-type system with those of the D4A and D4P mutations, our modeling reveals stark differences in unbinding pathways. The analysis presented here can be applied to any peptide–MHC complex of interest with a structural model as input, representing an important step toward comprehensive modeling of the MHC class I pathway. 
    more » « less
  4. Abstract Cerium has a wide range of current and emerging applications, and the binding of cerium ions to solid substrates is important for cerium recovery, or in advanced material synthesis. In this study, we investigate the affinity of a surface‐bound peptide derived from the EF‐hand loop I of calmodulin for cerium (III) ions and compare the results to a scrambled control. Results obtained via quartz crystal microbalance with dissipation are used to estimate the dissociation constant between the bound EF‐hand loop I peptide and cerium (III) ions (1.3 ± 0.1 μM), which is comparable with other dissociation constants measured for EF‐hand peptides and cerium ions in solution reported this work and in literature (0.95‐5.8 μM). Circular dichroism also suggests that the peptide binds to cerium (III) ions in solution, and undergoes a secondary structural change upon binding. Overall, this study shows that EF‐hand loop peptides are capable of binding cerium (III) ions in solution and when attached to a solid substrate. 
    more » « less
  5. Abstract MotivationMHC Class I protein plays an important role in immunotherapy by presenting immunogenic peptides to anti-tumor immune cells. The repertoires of peptides for various MHC Class I proteins are distinct, which can be reflected by their diverse binding motifs. To characterize binding motifs for MHC Class I proteins, in vitro experiments have been conducted to screen peptides with high binding affinities to hundreds of given MHC Class I proteins. However, considering tens of thousands of known MHC Class I proteins, conducting in vitro experiments for extensive MHC proteins is infeasible, and thus a more efficient and scalable way to characterize binding motifs is needed. ResultsWe presented a de novo generation framework, coined PepPPO, to characterize binding motif for any given MHC Class I proteins via generating repertoires of peptides presented by them. PepPPO leverages a reinforcement learning agent with a mutation policy to mutate random input peptides into positive presented ones. Using PepPPO, we characterized binding motifs for around 10 000 known human MHC Class I proteins with and without experimental data. These computed motifs demonstrated high similarities with those derived from experimental data. In addition, we found that the motifs could be used for the rapid screening of neoantigens at a much lower time cost than previous deep-learning methods. Availability and implementationThe software can be found in https://github.com/minrq/pMHC. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less