skip to main content


Title: Problem posing and creativity in elementary-school mathematics
> Context • In 1972, Papert emphasized that “[t]he important difference between the work of a child in an elementary mathematics class and […]a mathematician” is “not in the subject matter […]but in the fact that the mathematician is creatively engaged […]” Along with creative, Papert kept saying children should be engaged in projects rather than problems. A project is not just a large problem, but involves sustained, active engagement, like children’s play. For Papert, in 1972, computer programming suggested a flexible construction medium, ideal for a research-lab/playground tuned to mathematics for children. In 1964, without computers, Sawyer also articulated research-playgrounds for children, rooted in conventional content, in which children would learn to act and think like mathematicians. > Problem • This target article addresses the issue of designing a formal curriculum that helps children develop the mathematical habits of mind of creative tinkering, puzzling through, and perseverance. I connect the two mathematicians/educators – Papert and Sawyer – tackling three questions: How do genuine puzzles differ from school problems? What is useful about children creating puzzles? How might puzzles, problem-posing and programming-centric playgrounds enhance mathematical learning? > Method • This analysis is based on forty years of curriculum analysis, comparison and construction, and on research with children. > Results • In physical playgrounds most children choose challenge. Papert’s ideas tapped that try-something-new and puzzle-it-out-for-yourself spirit, the drive for challenge. Children can learn a lot in such an environment, but what (and how much) they learn is left to chance. Formal educational systems set standards and structures to ensure some common learning and some equity across students. For a curriculum to tap curiosity and the drive for challenge, it needs both the playful looseness that invites exploration and the structure that organizes content. > Implications • My aim is to provide support for mathematics teachers and curriculum designers to design or teach in accord with their constructivist thinking. > Constructivist content • This article enriches Papert’s constructionism with curricular ideas from Sawyer and from the work that I and my colleagues have done  more » « less
Award ID(s):
1741792
NSF-PAR ID:
10100698
Author(s) / Creator(s):
Date Published:
Journal Name:
Constructivist Foundations
Volume:
14
Issue:
3
ISSN:
1782-348X
Page Range / eLocation ID:
601–613
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Seymour Papert’s 1972 paper “Teaching Children to be Mathematicians Versus Teaching About Mathematics” started with the summary statement “The important difference between the work of a child in an elementary mathematics class and that of a mathematician is not in the subject matter…but in the fact that the mathematician is creatively engaged….” Along with “creative,” a key term Papert kept using is project rather than the common notion of problem. A project is not simply a very large problem. It centrally includes a focus on sustained and active engagement. The projects in his illustrations were essentially research projects, not just multi-step, fullyprescribed, build-a-thing tasks, no matter how nice the end product might be. A mathematical playground with enough attractive destinations in it draws children naturally to pose their own tasks and projects—as they universally do in their other personal and group playgrounds—and to learn to act and think like mathematicians. They even acquire conventionally taught content through that play. Physical construction was always available, and appealed to such thinkers as Dewey, but for Papert computer programming, newly available to school, suggested a more flexible medium and a model for an ideal playground. A fact about playgrounds is that children choose challenge. In working and playing with children I’ve seen that puzzles tap some of the same personally chosen challenge that a programming centric playground offers. Children are naturally drawn to intellectual challenges of riddles (ones they learn and ones they invent) and puzzles; and adults are so lured by puzzles that even supermarkets sell books of them. So what’s the difference between real puzzles and school problems? What’s useful about creating a puzzle or posing a problem? How might puzzles and problem posing support mathematical learning? And what’s constructionist about this? This plenary will try to respond to these questions, invite some of your own responses, let you solve and create some puzzles, and explore how problem posing in programming and puzzling can support mathematics even in an age of rigid content constraints. 
    more » « less
  2. Abstract  
    more » « less
  3. Abstract This article reports on an exploration of how second-graders can learn mathematics through programming. We started from the theory that a suitably designed programming language can serve children as a language for expressing and experimenting with mathematical ideas and processes in order to do mathematics and thereby, with appropriate tasks and teaching, learn and enjoy the subject. This is very different from using the computer as a teaching app or a digital medium for exploration. Children tackled genuine puzzles – problems for which they did not already have a pre-learned solution. So far, we have built four microworlds for second-graders and tested them with a diverse population of well over three hundred children. The microworlds focus on the most critical second-grade mathematical content (as mandated in state standards), let children pick up all key programming ideas in contexts that make them ‘obvious’ (to maintain focus on the mathematics) and suppress all other distractions to minimize overhead for teachers or students using the microworlds. Because children see the results of the actions they articulate (in the computer language, Snap ! ), they can evaluate their methods and solutions themselves. The feedback is purely the outcome, not happy or sad sounds from the computer. Notably, nearly all children showed intense engagement, some choosing microworlds even outside of mathematics time. Teachers spontaneously reported this as well, with special mention of children whom they found hard to engage in regular lessons. We report our experiments and observations in the spirit of sharing the ideas and promoting more research. 
    more » « less
  4. Navigating a career as a mathematician in academia, industry, or a national lab was challenging for many families with children before the COVID-19 pandemic. Then, the pandemic hit and the situation was exacerbated. Parents and parents-to-be were tested and challenged in ways unanticipated, with time for parental duties clashing with time for research, teaching, and service, leaving those wishing to be parents contemplating the feasibility of this balancing act of parenthood and work-life in a COVID-19 era and beyond. Many members in our mathematics community experienced these challenges first hand and persevered. Lessons were learned and different methodologies employed as many reimagined what work-life and home-life balance looked like. These lessons and methodologies can be useful in our future endeavors as parent-educators and researchers, and if shared can benefit others who are in parenthood or on the path to parenthood, as they seek to create a better harmony between work and home life. Thus, this article explores and showcases some of the discussions that ensued during a 2022 Joint Mathematics Meeting (JMM) Professional Development Workshop Mathematicians Navigating Parenthood organized by the authors. The article collects key discussion points and lessons learned, putting together useful solutions and resources, as well as unresolved questions. We report on strategies to help parents and parents-to-be succeed as well as present proposals on what departments could implement based on their individual policies to provide a welcoming environment to colleagues with, or expecting, children. 
    more » « less
  5. The purpose of this study was to explore how kindergarten students (aged 5–6 years) engaged with mathematics as they learned programming with robot coding toys. We video-recorded 16 teaching sessions of kindergarten students’ (N = 36) mathematical and programming activities. Students worked in small groups (4–5 students) with robot coding toys on the floor in their classrooms, solving tasks that involved programming these toys to move to various locations on a grid. Drawing on a semiotic mediation perspective, we analyzed video data to identify the mathematics concepts and skills students demonstrated and the overlapping mathematics-programming knowledge exhibited by the students during these programming tasks. We found that kindergarten children used spatial, measurement, and number knowledge, and the design of the tasks, affordances of the robots, and types of programming knowledge influenced how the students engaged with mathematics. The paper concludes with a discussion about the intersections of mathematics and programming knowledge in early childhood, and how programming robot toys elicited opportunities for students to engage with mathematics in dynamic and interconnected ways, thus creating an entry point to reassert mathematics beyond the traditional school content and curriculum. 
    more » « less