The Reaction between Mn and Se Layers: The Reaction between Mn and Se Layers
- Award ID(s):
- 1710214
- PAR ID:
- 10100776
- Date Published:
- Journal Name:
- Zeitschrift für anorganische und allgemeine Chemie
- Volume:
- 644
- Issue:
- 24
- ISSN:
- 0044-2313
- Page Range / eLocation ID:
- 1875 to 1880
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Van der Waals (vdW) heterostructures that pair materials with diverse properties enable various quantum phenomena. However, the direct growth of vdW heterostructures is challenging. Modification of the surface layer of quantum materials to introduce new properties is an alternative process akin to solid state reaction. Here, vapor deposited transition metals (TMs), Cr and Mn, are reacted with Bi2Se3with the goal to transform the surface layer to XBi2Se4(X = Cr, Mn). Experiments and ab initio MD simulations demonstrate that the TMs have a high selenium affinity driving Se diffusion toward the TM. For monolayer Cr, the surface Bi2Se3is reduced to Bi2‐layer and a stable (pseudo) 2D Cr1+δSe2layer is formed. In contrast, monolayer Mn can transform upon mild annealing into MnBi2Se4. This phase only forms for a precise amount of initial Mn deposition. Sub‐monolayer amounts dissolve into the bulk, and multilayers form stable MnSe adlayers. This study highlights the delicate energy balance between adlayers and desired surface modified layers that governs the interface reactions and that the formation of stable adlayers can prevent the reaction with the substrate. The success of obtaining MnBi2Se4points toward an approach for the engineering of other multicomponent vdW materials by surface reactions.more » « less
-
Insertion of metal layers between layered transition-metal dichalcogenides (TMDs) enables the design of new pseudo-2D nanomaterials. The general premise is that various metal atoms may adopt energetically favorable intercalation sites between two TMD sheets. These covalently bound metals arrange in metastable configurations and thus enable the controlled synthesis of nanomaterials in a bottom-up approach. Here, this method is demonstrated by the insertion of Cr or Mn between VSe2 layers. Vacuum-deposited transition metals diffuse between VSe2 layers with increasing concentration, arranging in ordered phases. The Cr3+ or Mn2+ ions are in octahedral coordination and thus in a high-spin state. Measured and computed magnetic moments are high for dilute Cr atoms, but with increasing Cr concentration the average magnetic moment decreases, suggesting antiferromagnetic ordering between Cr ions. The many possible combinations of transition metals with TMDs form a library for exploring quantum phenomena in these nanomaterials.more » « less
An official website of the United States government

