skip to main content


Title: UNVEILing connections between genotype, phenotype, and fitness in natural populations
Abstract

Understanding the links between genetic variation and fitness in natural populations is a central goal of evolutionary genetics. This monumental task spans the fields of classical and molecular genetics, population genetics, biochemistry, physiology, developmental biology, and ecology. Advances to our molecular and developmental toolkits are facilitating integrative approaches across these traditionally separate fields, providing a more complete picture of the genotype‐phenotype map in natural and non‐model systems. Here, we summarize research presented at the first annual symposium of the UNVEIL Network, an NSF‐funded collaboration between the University of Montana and the University of Nebraska, Lincoln, which took place from the 1st to the 3rd of June, 2018. We discuss how this body of work advances basic evolutionary science, what it implies for our ability to predict evolutionary change, and how it might inform novel conservation strategies.

 
more » « less
Award ID(s):
1736249
NSF-PAR ID:
10460405
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Ecology
Volume:
28
Issue:
8
ISSN:
0962-1083
Page Range / eLocation ID:
p. 1866-1876
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Although it is well appreciated that genetic studies of flowering time regulation have led to fundamental advances in the fields of molecular and developmental biology, the ways in which genetic studies of flowering time diversity have enriched the field of evolutionary biology have received less attention despite often being equally profound. Because flowering time is a complex, environmentally responsive trait that has critical impacts on plant fitness, crop yield, and reproductive isolation, research into the genetic architecture and molecular basis of its evolution continues to yield novel insights into our understanding of domestication, adaptation, and speciation. For instance, recent studies of flowering time variation have reconstructed how, when, and where polygenic evolution of phenotypic plasticity proceeded from standing variation andde novomutations; shown how antagonistic pleiotropy and temporally varying selection maintain polymorphisms in natural populations; and provided important case studies of how assortative mating can evolve and facilitate speciation with gene flow. In addition, functional studies have built detailed regulatory networks for this trait in diverse taxa, leading to new knowledge about how and why developmental pathways are rewired and elaborated through evolutionary time.

     
    more » « less
  2. Abstract

    Identifying the genetic architecture of complex traits is important to many geneticists, including those interested in human disease, plant and animal breeding, and evolutionary genetics. Advances in sequencing technology and statistical methods for genome-wide association studies have allowed for the identification of more variants with smaller effect sizes, however, many of these identified polymorphisms fail to be replicated in subsequent studies. In addition to sampling variation, this failure to replicate reflects the complexities introduced by factors including environmental variation, genetic background, and differences in allele frequencies among populations. Using Drosophila melanogaster wing shape, we ask if we can replicate allelic effects of polymorphisms first identified in a genome-wide association studies in three genes: dachsous, extra-macrochaete, and neuralized, using artificial selection in the lab, and bulk segregant mapping in natural populations. We demonstrate that multivariate wing shape changes associated with these genes are aligned with major axes of phenotypic and genetic variation in natural populations. Following seven generations of artificial selection along the dachsous shape change vector, we observe genetic differentiation of variants in dachsous and genomic regions containing other genes in the hippo signaling pathway. This suggests a shared direction of effects within a developmental network. We also performed artificial selection with the extra-macrochaete shape change vector, which is not a part of the hippo signaling network, but showed a largely shared direction of effects. The response to selection along the emc vector was similar to that of dachsous, suggesting that the available genetic diversity of a population, summarized by the genetic (co)variance matrix (G), influenced alleles captured by selection. Despite the success with artificial selection, bulk segregant analysis using natural populations did not detect these same variants, likely due to the contribution of environmental variation and low minor allele frequencies, coupled with small effect sizes of the contributing variants.

     
    more » « less
  3. Synopsis

    While the modern framework of evolutionary development (evo-devo) has been decidedly genetic, historic analyses have also considered the importance of mechanics in the evolution of form. With the aid of recent technological advancements in both quantifying and perturbing changes in the molecular and mechanical effectors of organismal shape, how molecular and genetic cues regulate the biophysical aspects of morphogenesis is becoming increasingly well studied. As a result, this is an opportune time to consider how the tissue-scale mechanics that underlie morphogenesis are acted upon through evolution to establish morphological diversity. Such a focus will enable a field of evo-devo mechanobiology that will serve to better elucidate the opaque relations between genes and forms by articulating intermediary physical mechanisms. Here, we review how the evolution of shape is measured and related to genetics, how recent strides have been made in the dissection of developmental tissue mechanics, and how we expect these areas to coalesce in evo-devo studies in the future.

     
    more » « less
  4. Abstrvact

    The basic mechanisms of leaf development have been revealed through a combination of genetics and intense analyses in select model species. The genetic basis for diversity in leaf morphology seen in nature is also being unraveled through recent advances in techniques and technologies related to genomics and transcriptomics, which have had a major impact on these comparative studies. However, this has led to the emergence of new unresolved questions about the mechanisms that generate the diversity of leaf form. Here, we provide a review of the current knowledge of the fundamental molecular genetic mechanisms underlying leaf development with an emphasis on natural variation and conserved gene regulatory networks involved in leaf development. Beyond that, we discuss open questions/enigmas in the area of leaf development, how recent technologies can best be deployed to generate a unified understanding of leaf diversity and its evolution, and what untapped fields lie ahead.

     
    more » « less
  5. Abstract

    Recent studies have revealed an astonishing diversity of sex chromosomes in many vertebrate lineages, prompting questions about the mechanisms of sex chromosome turnover. While there is considerable population genetic theory about the evolutionary forces promoting sex chromosome replacement, this theory has not yet been integrated with our understanding of the molecular and developmental genetics of sex determination. Here, we review recent data to examine four questions about how the structure of gene networks influences the evolution of sex determination. We argue that patterns of epistasis, arising from the structure of genetic networks, may play an important role in regulating the rates and patterns of sex chromosome replacement.

     
    more » « less