skip to main content


Title: Impact of cesium on the phase and device stability of triple cation Pb–Sn double halide perovskite films and solar cells
Triple cation Cs/methylammonium (MA)/formamidinium (FA) and double halide Br/I lead perovskites improved the stability and efficiency of perovskite solar cells (PVSCs). However, their effects on alloyed Pb–Sn perovskites are unexplored. In this work, perovskite thin films with the composition Cs x (MA 0.17 FA 0.83 ) 1−x Pb 1−y Sn y (I 0.83 Br 0.17 ) 3 are synthesized utilizing a one-step solution process plus an anti-solvent wash technique and deployed in PVSCs with an inverted architecture. All films show a cubic crystal structure, demonstrating that compositional tuning of both the tolerance factor and crystallization rate allows for dense, single phase formation. The band gaps, affected by both lattice constriction and octahedral tilting, show opposite trends in Pb-rich or Sn-rich perovskites with the increase of Cs for fixed Sn compositions. The Cs 0.05 (MA 0.17 FA 0.83 ) 0.95 Pb 0.25 Sn 0.75 (I 0.83 Br 0.17 ) 3 PVSCs achieve a power conversion efficiency (PCE) of 11.05%, a record for any PVSC containing 75% Sn perovskites, and the Cs 0.10 (MA 0.17 FA 0.83 ) 0.90 Pb 0.75 Sn 0.25 (I 0.83 Br 0.17 ) 3 PVSCs reach a record PCE of 15.78%. Moreover, the triple cation and double halide alloyed Pb–Sn perovskites exhibit improved device stability under inert and ambient conditions. This study, which illustrates the impact of cation and halide tuning on alloyed Pb–Sn perovskites, can be used to further eliminate Pb and improve device performance of high Sn PVSCs and other optoelectronic devices.  more » « less
Award ID(s):
1661660 1748101
NSF-PAR ID:
10101029
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry A
Volume:
6
Issue:
36
ISSN:
2050-7488
Page Range / eLocation ID:
17426 to 17436
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Hybrid halide 2D perovskites deserve special attention because they exhibit superior environmental stability compared with their 3D analogs. The closer interlayer distance discovered in 2D Dion–Jacobson (DJ) type of halide perovskites relative to 2D Ruddlesden–Popper (RP) perovskites implies better carrier charge transport and superior performance in solar cells. Here, the structure and properties of 2D DJ perovskites employing 3‐(aminomethyl)piperidinium (3AMP2+) as the spacing cation and a mixture of methylammonium (MA+) and formamidinium (FA+) cations in the perovskite cages are presented. Using single‐crystal X‐ray crystallography, it is found that the mixed‐cation (3AMP)(MA0.75FA0.25)3Pb4I13perovskite has a narrower bandgap, less distorted inorganic framework, and larger PbIPb angles than the single‐cation (3AMP)(MA)3Pb4I13. Furthermore, the (3AMP)(MA0.75FA0.25)3Pb4I13films made by a solvent‐engineering method with a small amount of hydriodic acid have a much better film morphology and crystalline quality and more preferred perpendicular orientation. As a result, the (3AMP)(MA0.75FA0.25)3Pb4I13‐based solar cells exhibit a champion power conversion efficiency of 12.04% with a high fill factor of 81.04% and a 50% average efficiency improvement compared to the pristine (3AMP)(MA)3Pb4I13cells. Most importantly, the 2D DJ 3AMP‐based perovskite films and devices show better air and light stability than the 2D RP butylammonium‐based perovskites and their 3D analogs.

     
    more » « less
  2. Abstract

    Composition engineering is a particularly simple and effective approach especially using mixed cations and halide anions to optimize the morphology, crystallinity, and light absorption of perovskite films. However, there are very few reports on the use of anion substitutions to develop uniform and highly crystalline perovskite films with large grain size and reduced defects. Here, the first report of employing tetrafluoroborate (BF4) anion substitutions to improve the properties of (FA = formamidinium, MA = methylammonium (FAPbI3)0.83(MAPbBr3)0.17) perovskite films is demonstrated. The BF4can be successfully incorporated into a mixed‐ion perovskite crystal frame, leading to lattice relaxation and a longer photoluminescence lifetime, higher recombination resistance, and 1–2 orders magnitude lower trap density in prepared perovskite films and derived solar cells. These advantages benefit the performance of perovskite solar cells (PVSCs), resulting in an improved power conversion efficiency (PCE) of 20.16% from 17.55% due to enhanced open‐circuit voltage (VOC) and fill factor. This is the highest PCE for BF4anion substituted lead halide PVSCs reported to date. This work provides insight for further exploration of anion substitutions in perovskites to enhance the performance of PVSCs and other optoelectronic devices.

     
    more » « less
  3. Abstract

    Organometal halide perovskites have powerful intrinsic potential to drive next‐generation solar technology, but their insufficient thermomechanical reliability and unproven large‐area manufacturability limit competition with incumbent silicon photovoltaics. This work addresses these limitations by leveraging large‐area processing and robust inorganic hole transport layers (HTLs). Inverted perovskite solar cells utilizing NiOxHTLs deposited by rapid aqueous spray‐coating that outperform spin‐coated NiOxand lead to a 5× improvement in the fracture energy (Gc), a primary metric of thermomechanical stability, are presented. The morphology, chemical composition, and optoelectronic properties of the NiOxfilms are characterized to understand and optimize compatibility with an archetypal double cation perovskite, Cs.17FA.83Pb(Br.17I.83)3. Perovskite solar cells with sprayed NiOxshow higher photovoltaic performance, exhibiting up to 82% fill factor and 17.7% power conversion efficiency (PCE)—the highest PCE reported for inverted cell with scalable charge transport layers—as well as excellent stability under full illumination and after 4000 h aging in inert conditions at room temperature. By utilizing open‐air techniques and aqueous precursors, this combination of robust materials and low‐cost processing provides a platform for scaling perovskite modules with long‐term reliability.

     
    more » « less
  4. Abstract

    Metal halide perovskites (MHP) can be made more stable through the addition of small amounts of cesium. Despite the improvement, these multication absorbers still display strong environmental sensitivity to any combination of factors, including water, oxygen, bias, temperature, and light. Here, the relationship is elucidated between light absorption, charge carrier radiative recombination, and relative humidity (rH) for the Cs0.05FA0.79MA0.16Pb(I0.83Br0.17)3composition, revealing partially reversible reductions in the extinction coefficient and fully reversible 25× enhancements in absolute light emission registered across the same humidity cycles up to 70% rH. With in situ excitation wavelength‐dependent measurements, irreversible changes are identified in the perovskite after a single cycle of humidity‐dependent photoluminescence (PL) performed with 450 nm excitation. The in situ measurement platform can be extended to test the effect of other stressors on thin films’ optical behavior.

     
    more » « less
  5.  
    more » « less