skip to main content


Title: Investigation of a zirconium compound for redox switchable ring opening polymerization
A zirconium compound, (salfen)Zr(O i Pr) 2 (salfen = N , N ′-bis(2,4-di- tert -butylphenoxy)-1,1′-ferrocenediimine), was tested as a redox switchable catalyst for the ring opening polymerization of cyclic esters and epoxides. Different activities were observed in the reduced and oxidized state, and an orthogonal switch on monomer activities could be achieved. Diblock and triblock copolymers were synthesized using an in situ redox switch of the catalyst oxidation state.  more » « less
Award ID(s):
1809116
NSF-PAR ID:
10101110
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Dalton Transactions
Volume:
48
Issue:
9
ISSN:
1477-9226
Page Range / eLocation ID:
2996 to 3002
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Temporal control in atom transfer radical polymerization (ATRP) relies on modulating the oxidation state of a copper catalyst, as polymer chains are activated by L/Cu I and deactivated by L/Cu II . (Re)generation of L/Cu I activator has been achieved by applying a multitude of external stimuli. However, switching the Cu catalyst off by oxidizing to L/Cu II through external chemical stimuli has not yet been investigated. A redox switchable ATRP was developed in which an oxidizing agent was used to oxidize L/Cu I activator to L/Cu II , thus halting the polymerization. A ferrocenium salt or oxygen were used to switch off the Cu catalyst, whereas ascorbic acid was used to switch the catalyst on by (re)generating L/Cu I . The redox switches efficiently modulated the oxidation state of the catalyst without sacrificing control over polymerization. 
    more » « less
  2. null (Ed.)
    Redox catalysis has been broadly utilized in electrochemical synthesis due to its kinetic advantages over direct electrolysis. The appropriate choice of redox mediator can avoid electrode passivation and overpotential, which strongly inhibit the efficient activation of substrates in electrolysis. Despite the benefits brought by redox catalysis, establishing the precise nature of substrate activation remains challenging. Herein, we determine that a Co( i ) complex bearing two N , N , N -tridentate ligands acts as a competent redox catalyst for the reduction of benzyl bromide substrates. Kinetic studies combining electroanalytical techniques with multivariable linear-regression analysis were conducted, disclosing an outer-sphere electron-transfer mechanism, which occurs in concert with C–Br bond cleavage. Furthermore, we apply a pattern recognition platform to distinguish between mechanisms in the activation of benzyl bromides, found to be dependent on the ligation state of the cobalt( i ) center and ligand used. 
    more » « less
  3. Redox-switchable polymerization has drawn increasing attention, in particular for the ring-opening polymerization (ROP) of biomass-derived monomers. However, an understanding of how the switch determines the observed changes is still limited. In this study, DFT calculations were employed to understand the redox-switchable ROP mechanism of ε-caprolactone catalyzed by group 4 metal complexes bearing [OSSO]-type ferrocene ligands. Our results suggest that two oxidized forms show higher reactivity because of the higher Lewis acidity of their catalytic metal centers in comparison with that of the corresponding reduced states. In one case, however, a lower activity of the oxidized species was observed that is likely due to the increased stability of the substrate-catalyst intermediate leading to a high activation barrier. In addition, other analogous metal complexes were computationally modelled by changing the metal center or modifying the ancillary ligand with different bridging-heteroatoms, and the results provide useful information on the development of new redox-switchable polymerization catalysts. 
    more » « less
  4. Geophysical investigations documenting enhanced magnetic susceptibility (MS) within the water table fluctuation zone at hydrocarbon contaminated sites suggest that MS can be used as a proxy for investigating microbial mediated iron reduction during intrinsic bioremediation. Here, we investigated the microbial community composition over a 5-year period at a hydrocarbon-contaminated site that exhibited transient elevated MS responses. Our objective was to determine the key microbial populations in zones of elevated MS. We retrieved sediment cores from the petroleum-contaminated site near Bemidji, MN, United States, and performed MS measurements on these cores. We also characterized the microbial community composition by high-throughput 16S rRNA gene amplicon sequencing from samples collected along the complete core length. Our spatial and temporal analysis revealed that the microbial community composition was generally stable throughout the period of investigation. In addition, we observed distinct vertical redox zonations extending from the upper vadose zone into the saturated zone. These distinct redox zonations were concomitant with the dominant microbial metabolic processes as follows: (1) the upper vadose zone was dominated by aerobic microbial populations; (2) the lower vadose zone was dominated by methanotrophic populations, iron reducers and iron oxidizers; (3) the smear zone was dominated by iron reducers; and (4) the free product zone was dominated by syntrophic and methanogenic populations. Although the common notion is that high MS values are caused by high magnetite concentrations that can be biotically formed through the activities of iron-reducing bacteria, here we show that the highest magnetic susceptibilities were measured in the free-phase petroleum zone, where a methanogenic community was predominant. This field study may contribute to the emerging knowledge that methanogens can switch their metabolism from methanogenesis to iron reduction with associated magnetite precipitation in hydrocarbon contaminated sediments. Thus, geophysical methods such as MS may help to identify zones where iron cycling/reduction by methanogens is occurring. 
    more » « less
  5. null (Ed.)
    Redox-switchable polymerizations of lactide and epoxides were extended to the solid state by anchoring an iron-based polymerization catalyst to TiO 2 nanoparticles. The reactivity of the molecular complexes and their redox-switching characteristics were maintained in the solid-state. These properties resulted in surface-initiated polymerization reactions that produced polymer brushes whose chemical composition is dictated by the oxidation state of the iron-based complex. Depositing the catalyst-functionalized TiO 2 nanoparticles on fluorine-doped tin oxide resulted in an electrically addressable surface that could be used to demonstrate spatial control in redox-switchable polymerization reactions. By using a substrate that contained two electrically isolated domains wherein one domain was exposed to an oxidizing potential, patterns of surface-bound polyesters and polyethers were accessible through sequential application of lactide and cyclohexene oxide. The differentially functionalized surfaces demonstrated distinct physical properties that illustrated the promise for using the method to pattern surfaces with multiple, chemically distinct polymer brushes. 
    more » « less