skip to main content


Title: Creating cross-linked lamellar block copolymer supporting layers for biomimetic membranes
The long-standing goal in membrane development is creating materials with superior transport properties, including both high flux and high selectivity. These properties are common in biological membranes, and thus mimicking nature is a promising strategy towards improved membrane design. In previous studies, we have shown that artificial water channels can have excellent water transport abilities that are comparable to biological water channel proteins, aquaporins. In this study, we propose a strategy for incorporation of artificial channels that mimic biological channels into stable polymeric membranes. Specifically, we synthesized an amphiphilic triblock copolymer, poly(isoprene)– block –poly(ethylene oxide)– block –poly(isoprene), which is a high molecular weight synthetic analog of naturally occurring lipids in terms of its self-assembled structure. This polymer was used to build stacked membranes composed of self-assembled lamellae. The resulting membranes resemble layers of natural lipid bilayers in living systems, but with superior mechanical properties suitable for real-world applications. The procedures used to synthesize the triblock copolymer resulted in membranes with increased stability due to the crosslinkability of the hydrophobic domains. Furthermore, the introduction of bridging hydrophilic domains leads to the preservation of the stacked membrane structure when the membrane is in contact with water, something that is challenging for diblock lamellae that tend to swell, and delaminate in aqueous solutions. This new method of membrane fabrication offers a practical model for making channel-based biomimetic membranes, which may lead to technological applications in reverse osmosis, nanofiltration, and ultrafiltration membranes.  more » « less
Award ID(s):
1709522 1946392 1552571
NSF-PAR ID:
10101194
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Faraday Discussions
Volume:
209
ISSN:
1359-6640
Page Range / eLocation ID:
179 to 191
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wetting and dewetting behavior in channel-confined hydrophobic volumes is used in biological membranes to effect selective ion/molecular transport. Artificial biomimetic hydrophobic nanopores have been devised utilizing wetting and dewetting, however, tunable mass transport control utilizing multiple transport modes is required for applications such as controllable release/transport, water separation/purification and energy conversion. Here, we investigate the potential-induced wetting and dewetting behavior in a pH-responsive membrane composed of a polystyrene- b -poly(4-vinylpyridine) (PS- b -P4VP) block copolymer (BCP) when fabricated as a hierarchically-organized sandwich structure on a nanopore electrode array (NEA), i.e. BCP@NEA. At pH < p K a (P4VP) (p K a ∼ 4.8), the BCP acts as an anion-exchange membrane due to the hydrophilic, protonated P4VP cylindrical nanodomains, but at pH > p K a (P4VP), the P4VP domains exhibit charge-neutral, hydrophobic and collapsed structures, blocking mass transport via the hydrophobic membrane. However, when originally prepared in a dewetted condition, mass transport in the BCP membrane may be switched on if sufficiently negative potentials are applied to the BCP@NEA architecture. When the hydrophobic BCP membrane is introduced on top of 2-electrode-embedded nanopore arrays, electrolyte solution in the nanopores is introduced, then isolated, by exploiting the potential-induced wetting and dewetting transitions in the BCP membrane. The potential-induced wetting/dewetting transition and the effect on cyclic voltammetry in the BCP@NEA structures is characterized as a function of the potential, pH and ionic strength. In addition, chronoamperometry and redox cycling experiments are used to further characterize the potential response. The multi-modal mass transport system proposed in this work will be useful for ultrasensitive sensing and single-molecule studies, which require long-time monitoring to explore reaction dynamics as well as molecular heterogeneity in nanoconfined volumes. 
    more » « less
  2. Peptide-appended Pillar[5]arene (PAP) is an artificial water channel that can be incorporated into lipid and polymeric membranes to achieve high permeability and enhanced selectivity for angstrom-scale separations [Shen et al. Nat. Commun. 9 :2294 (2018)]. In comparison to commonly studied rigid carbon nanotubes, PAP channels are conformationally flexible, yet these channels allow a high water permeability [Y. Liu and H. Vashisth Phys. Chem. Chem. Phys. 21 :22711 (2019)]. Using molecular dynamics (MD) simulations, we study water dynamics in PAP channels embedded in biological (lipid) and biomimetic (block-copolymer) membranes to probe the effect of the membrane environment on water transport characteristics of PAP channels. We have resolved the free energy surface and local minima for water diffusion within the channel in each type of membrane. We find that water follows single file transport with low free-energy barriers in regions surroundings the central ring of the PAP channel and the single file diffusivity of water correlates with the number of hydrogen bonding sites within the channel, as is known for other sub-nm pore-size synthetic and biological water channels [Horner et al. Sci. Adv. 1 :e1400083 (2015)]. 
    more » « less
  3. The tunable properties of thermoplastic elastomers (TPEs), through polymer chemistry manipulations, enable these technologically critical materials to be employed in a broad range of applications. The need to “dial-in” the mechanical properties and responses of TPEs generally requires the design and synthesis of new macromolecules. In these designs, TPEs with nonlinear macromolecular architectures outperform the mechanical properties of their linear copolymer counterparts, but the differences in deformation mechanism providing enhanced performance are unknown. Here, in situ small-angle X-ray scattering (SAXS) measurements during uniaxial extension reveal distinct deformation mechanisms between a commercially available linear poly(styrene)-poly(butadiene)-poly(styrene) (SBS) triblock copolymer and the grafted SBS version containing grafted poly(styrene) (PS) chains from the poly(butadiene) (PBD) mid-block. The neat SBS (φSBS = 100%) sample deforms congruently with the macroscopic dimensions with the domain spacing between spheres increasing and decreasing along and traverse to the stretch direction, respectively. At high extensions, end segment pullout from the PS-rich domains is detected, which is indicated by a disordering of SBS. Conversely, the PS-grafted SBS that is 30 vol% SBS and 70% styrene (φSBS = 30%) exhibits a lamellar morphology and in situ SAXS measurements reveal an unexpected deformation mechanism. During deformation there are two simultaneous processes: significant lamellar domain rearrangement to preferentially orient the lamellae planes parallel to the stretch direction and crazing. The samples whiten at high strains as expected for crazing, which corresponds with the emergence of features in the two-dimensional SAXS pattern during stretching consistent with fibril-like structures that bridge the voids in crazes. The significant domain rearrangement in the grafted copolymers is attributed to the new junctions formed across multiple PS domains by the grafts of a single chain. The in situ SAXS measurements provide insights into the enhanced mechanical properties of grafted copolymers that arise through improved physical crosslinking that leads to nanostructured domain reorientation for self-reinforcement and craze formation where fibrils help to strengthen the polymer. 
    more » « less
  4. Abstract

    Materials combining an asymmetric pore structure with mesopores everywhere enable high surface area accessibility and fast transport, making them attractive for e.g., energy conversion and storage applications. Block copolymer (BCP)/inorganic precursor co‐assembly combined with non‐solvent induced phase separation (NIPS) provides a route to materials in which a mesoporous top surface layer merges into an asymmetric support with graded porosity along the film normal and mesopores throughout. Here, the co‐assembly and non‐solvent‐induced phase separation (CNIPS) of poly(isoprene)‐b‐poly(styrene)‐b‐poly(4‐vinylpyridine) (ISV) triblock terpolymer and titanium dioxide (TiO2) sol‐gel nanoparticlesare reported. Heat‐treatment in air results in free‐standing asymmetric porous TiO2. Further thermal processing in ammonia results in free‐standing asymmetric porous titanium nitride (TiN). processing changes alter structural membrane characteristics is demonstrated. Changing the CNIPS evaporation time results in various membrane cross‐sections ( finger‐like to sponge‐like). Oxide and nitride material composition, crystallinity, and porosity are tuned by varying thermal processing conditions. Finally, thermal processing condition effects are probed on phase‐pure asymmetric nitride membrane behavior using cyclic voltammetry to elucidate their influence, e.g., on specific capacitance. Results provide further insights into improving asymmetric and porous materials for applications including energy conversion and storage, separation, and catalysis and motivate a further expansion of CNIPS to other (in)organic materials.

     
    more » « less
  5. Peptide appended pillar[5]arene (PAP) is an artificial water channel resembling biological water channel proteins, which has shown a significant potential for designing bioinspired water purification systems. Given that PAP channels need to be incorporated at a high density in membrane matrices, it is critical to examine the role of channel–channel and channel–membrane interactions in governing the structural and functional characteristics of channels. To resolve the atomic-scale details of these interactions, we have carried out atomistic molecular dynamics (MD) simulations of multiple PAP channels inserted in a lipid or a block-copolymer (BCP) membrane matrix. Classical MD simulations on a sub-microsecond timescale showed clustering of channels only in the lipid membrane, but enhanced sampling MD simulations showed thermodynamically-favorable dimerized states of channels in both lipid and BCP membranes. The dimerized configurations of channels, with an extensive buried surface area, were stabilized via interactions between the aromatic groups in the peptide arms of neighboring channels. The conformational metrics characterizing the orientational and structural changes in channels revealed a higher flexibility in the lipid membrane as opposed to the BCP membrane although hydrogen bonds between the channel and the membrane molecules were not a major contributor to the stability of channels in the BCP membrane. We also found that the channels undergo wetting/dewetting transitions in both lipid and BCP membranes with a marginally higher probability of undergoing a dewetting transition in the BCP membrane. Collectively, these results highlight the role of channel dynamics in governing channel–channel and channel–membrane interfacial interactions, and provide atomic-scale insights needed to design stable and functional biomimetic membranes for efficient separations. 
    more » « less