skip to main content


Title: Creating cross-linked lamellar block copolymer supporting layers for biomimetic membranes
The long-standing goal in membrane development is creating materials with superior transport properties, including both high flux and high selectivity. These properties are common in biological membranes, and thus mimicking nature is a promising strategy towards improved membrane design. In previous studies, we have shown that artificial water channels can have excellent water transport abilities that are comparable to biological water channel proteins, aquaporins. In this study, we propose a strategy for incorporation of artificial channels that mimic biological channels into stable polymeric membranes. Specifically, we synthesized an amphiphilic triblock copolymer, poly(isoprene)– block –poly(ethylene oxide)– block –poly(isoprene), which is a high molecular weight synthetic analog of naturally occurring lipids in terms of its self-assembled structure. This polymer was used to build stacked membranes composed of self-assembled lamellae. The resulting membranes resemble layers of natural lipid bilayers in living systems, but with superior mechanical properties suitable for real-world applications. The procedures used to synthesize the triblock copolymer resulted in membranes with increased stability due to the crosslinkability of the hydrophobic domains. Furthermore, the introduction of bridging hydrophilic domains leads to the preservation of the stacked membrane structure when the membrane is in contact with water, something that is challenging for diblock lamellae that tend to swell, and delaminate in aqueous solutions. This new method of membrane fabrication offers a practical model for making channel-based biomimetic membranes, which may lead to technological applications in reverse osmosis, nanofiltration, and ultrafiltration membranes.  more » « less
Award ID(s):
1709522 1946392 1552571
PAR ID:
10101194
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Faraday Discussions
Volume:
209
ISSN:
1359-6640
Page Range / eLocation ID:
179 to 191
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Peptide-appended Pillar[5]arene (PAP) is an artificial water channel that can be incorporated into lipid and polymeric membranes to achieve high permeability and enhanced selectivity for angstrom-scale separations [Shen et al. Nat. Commun. 9 :2294 (2018)]. In comparison to commonly studied rigid carbon nanotubes, PAP channels are conformationally flexible, yet these channels allow a high water permeability [Y. Liu and H. Vashisth Phys. Chem. Chem. Phys. 21 :22711 (2019)]. Using molecular dynamics (MD) simulations, we study water dynamics in PAP channels embedded in biological (lipid) and biomimetic (block-copolymer) membranes to probe the effect of the membrane environment on water transport characteristics of PAP channels. We have resolved the free energy surface and local minima for water diffusion within the channel in each type of membrane. We find that water follows single file transport with low free-energy barriers in regions surroundings the central ring of the PAP channel and the single file diffusivity of water correlates with the number of hydrogen bonding sites within the channel, as is known for other sub-nm pore-size synthetic and biological water channels [Horner et al. Sci. Adv. 1 :e1400083 (2015)]. 
    more » « less
  2. One of the most efficient and promising separation alternatives to thermal methods such as distillation is the use of polymeric membranes that separate mixtures based on molecular size or chemical affinity. Self-assembled block copolymer membranes have gained considerable attention within the membrane field due to precise control over nanoscale structure, pore size, and chemical versatility. Despite the rapid progress and excitement, a significant hurdle in using block copolymer membranes for nanometer and sub-nanometer separations such as nanofiltration and reverse osmosis is the lower limit on domain size features. Strategies such as polymer post-functionalization, self-assembly of oligomers, liquid crystals, and random copolymers, or incorporation of artificial/natural channels within block copolymer materials are future directions with the potential to overcome current limitations with respect to separation size. 
    more » « less
  3. Peptide appended pillar[5]arene (PAP) is an artificial water channel resembling biological water channel proteins, which has shown a significant potential for designing bioinspired water purification systems. Given that PAP channels need to be incorporated at a high density in membrane matrices, it is critical to examine the role of channel–channel and channel–membrane interactions in governing the structural and functional characteristics of channels. To resolve the atomic-scale details of these interactions, we have carried out atomistic molecular dynamics (MD) simulations of multiple PAP channels inserted in a lipid or a block-copolymer (BCP) membrane matrix. Classical MD simulations on a sub-microsecond timescale showed clustering of channels only in the lipid membrane, but enhanced sampling MD simulations showed thermodynamically-favorable dimerized states of channels in both lipid and BCP membranes. The dimerized configurations of channels, with an extensive buried surface area, were stabilized via interactions between the aromatic groups in the peptide arms of neighboring channels. The conformational metrics characterizing the orientational and structural changes in channels revealed a higher flexibility in the lipid membrane as opposed to the BCP membrane although hydrogen bonds between the channel and the membrane molecules were not a major contributor to the stability of channels in the BCP membrane. We also found that the channels undergo wetting/dewetting transitions in both lipid and BCP membranes with a marginally higher probability of undergoing a dewetting transition in the BCP membrane. Collectively, these results highlight the role of channel dynamics in governing channel–channel and channel–membrane interfacial interactions, and provide atomic-scale insights needed to design stable and functional biomimetic membranes for efficient separations. 
    more » « less
  4. Artificial water channels are a practical alternative to biological water channels for achieving exceptional water permeability and selectivity in a stable and scalable architecture. However, channel-based membrane fabrication faces critical barriers such as: (1) increasing pore density to achieve measurable gains in permeability while maintaining selectivity, and (2) scale-up to practical membrane sizes for applications. Recently, we proposed a technique to prepare channel-based membranes using peptide-appended pillar[5]arene (PAP[5]) artificial water channels, addressing the above challenges. These multi-layered PAP[5] membranes (ML-PAP[5]) showed significantly improved water permeability compared to commercial membranes with similar molecular weight cut-offs. However, due to the distinctive pore structure of water channels and the layer-by-layer architecture of the membrane, the separation behavior is unique and was still not fully understood. In this paper, two unique selectivity trends of ML-PAP[5] membranes are discussed from the perspectives of channel geometry, ion exclusion, and linear molecule transport. 
    more » « less
  5. Aquaporins (AQPs) are naturally occurring water channel proteins. They can facilitate water molecule translocation across cellular membranes with exceptional selectivity and high permeability that are unmatched in synthetic membrane systems. These unique properties of AQPs have led to their use as functional elements in membranes in recent years. However, the intricate nature of AQPs and concerns regarding their stability and processability have encouraged researchers to develop synthetic channels that mimic the structure and properties of AQPs and other biological water-conducting channels. These channels have been termed artificial water channels. This article reviews current progress and provides a historical perspective as well as an outlook toward developing scalable membranes based on artificial water channels. 
    more » « less