Abstract For many planar bipedal models, each step is divided into a finite time single support period and an instantaneous double support period. During single support, the biped is typically underactuated and thus has limited ability to reject disturbances. The instantaneous nature of the double support period prevents nonimpulsive control during this period. However, if the double support period is expanded to finite time, it becomes overactuated. While it has been hypothesized that this overactuation during a finite-time double support period may improve disturbance rejection capabilities, this has not yet been tested. This paper presents a refined biped model by developing a finite-time, adaptive double support controller capable of handling the overactuation and limiting slip. Using simulations, we quantify the disturbance rejection capabilities of this controller and directly compare them to a typical, instantaneous double support model for a range of gait speeds and perturbations. We find that the finite-time double support controller increased the walking stability of the biped in approximately half of the cases, indicating that a finite-time double support period does not automatically increase disturbance rejection capabilities. We also find that the timing and magnitude of the perturbation can affect if a finite-time double support period enhances stability. Finally, we demonstrate that the adaptive controller reduces slipping. 
                        more » 
                        « less   
                    
                            
                            Effect of Finite-time DS Controllers on Disturbance Rejection for Planar Bipeds
                        
                    
    
            For many planar bipedal models, each step is divided into a finite time single support period and an instantaneous double support period. During single support, the biped is typically underactuated and thus has limited ability to reject disturbances. The instantaneous nature of the double support period prevents control during this period. However, if the double support period is expanded to finite time, this introduces an overactuated period into the model which may improve disturbance rejection capabilities. This paper derives and compares the performance of two finite-time double support controllers. The first controller uses time to drive the progression of the double support period and controls the joint angles. The second controller uses a time-invariant phase variable to drive the progression of the double support period and controls the joint velocities since it is not possible to control the joint positions. The disturbance rejection capabilities of both controllers are then quantified using simulations. The instantaneous double support model is also simulated for comparison. The instantaneous double support model can recover from the largest disturbances but it requires the greatest number of steps to do. The time-based double support controller can recover from the smallest range of disturbances but requires the fewest number of steps for a given perturbation size. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1727540
- PAR ID:
- 10101240
- Date Published:
- Journal Name:
- American Controls Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Frequency restoration in power systems is conventionally performed by broadcasting a centralized signal to local controllers. As a result of the energy transition, technological advances, and the scientific interest in distributed control and optimization methods, a plethora of distributed frequency control strategies have been proposed recently that rely on communication amongst local controllers. In this paper, we propose a fully decentralized leaky integral controller for frequency restoration that is derived from a classic lag element. We study steady-state, asymptotic optimality, nominal stability, input-to-state stability, noise rejection, transient performance, and robustness properties of this controller in closed loop with a nonlinear and multivariable power system model. We demonstrate that the leaky integral controller can strike an acceptable trade-off between performance and robustness as well as between asymptotic disturbance rejection and transient convergence rate by tuning its DC gain and time constant. We compare our findings to conventional decentralized integral control and distributed- averaging-based integral control in theory and simulations.more » « less
- 
            Microgrids must be able to restore voltage and frequency to their reference values during transient events; inverters are used as part of a microgrid's hierarchical control for maintaining power quality. Reviewed methods either do not allow for intuitive trade-off tuning between the objectives of synchronous state restoration, local reference tracking, and disturbance rejection, or do not consider all of these objectives. In this paper, we address all of these objectives for voltage restoration in droop-controlled inverter-based islanded micro-grids. By using distributed model predictive control (DMPC) in series with an unscented Kalman Filter (UKF), we design a secondary voltage controller to restore the voltage to the reference in finite time. The DMPC solves a reference tracking problem while rejecting reactive power disturbances in a noisy system. The method we present accounts for non-zero mean disturbances by design of a random-walk estimator. We validate the method's ability to restore the voltage in finite time via modeling a multi-node microgrid in Simulink.more » « less
- 
            Online convex optimization (OCO) is a powerful tool for learning sequential data, making it ideal for high precision control applications where the disturbances are arbitrary and unknown in advance. However, the ability of OCO-based controllers to accurately learn the disturbance while maintaining closed-loop stability relies on having an accurate model of the plant. This paper studies the performance of OCO-based controllers for linear time-invariant (LTI) systems subject to disturbance and model uncertainty. The model uncertainty can cause the closed-loop to become unstable. We provide a sufficient condition for robust stability based on the small gain theorem. This condition is easily incorporated as an on-line constraint in the OCO controller. Finally, we verify via numerical simulations that imposing the robust stability condition on the OCO controller ensures closed-loop stability.more » « less
- 
            In this paper, we derive closed-form expressions for implicit controlled invariant sets for discrete-time controllable linear systems with measurable disturbances. In particular, a disturbance-reactive (or disturbance feedback) controller in the form of a parameterized finite automaton is considered. We show that, for a class of automata, the robust positively invariant sets of the corresponding closed-loop systems can be expressed by a set of linear inequality constraints in the joint space of system states and controller parameters. This leads to an implicit representation of the invariant set in a lifted space. We further show how the same parameterization can be used to compute invariant sets when the disturbance is not available for measurement.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    