skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Mathematical Errors When Teaching: A Case of Secondary Mathematics Prospective Teachers’ Early Field Experiences
The construct of mathematical knowledge for teaching (MKT) has transformed research and practice regarding the mathematical preparation of future teachers. However, the measures used to assess MKT are largely written tasks, which may fail to adequately represent the nature of content knowledge as it is used in instructional decision making. This preliminary report shares initial findings into one measure of MKT in practice – mathematical errors made during planning and enactment of mathematics instruction. We analyzed lesson plans and classroom video from prospective secondary mathematics teachers (PSTs)’ supervised field experiences in college algebra course. We found that there tended be more errors related to understanding of functions (especially logarithmic), but relatively few errors happened overall during instruction. Of the errors made during planning, the majority of these errors were issues of mathematical precision. Implications for the mathematical preparation of secondary PSTs, as well as research on MKT in practice, are discussed.  more » « less
Award ID(s):
1725910
PAR ID:
10101301
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the 22nd Annual Conference on Research in Undergraduate Education
Page Range / eLocation ID:
859-865
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Karunakaran, S. S. ; Higgins, A. (Ed.)
    Preparing prospective secondary teachers (PSTs) to teach mathematics with a focus on reasoning and proving is an important goal for teacher education programs. A capstone course, Mathematical Reasoning and Proving for Secondary Teachers, was designed to address this goal. One component of the course was a school-based experience in which the PSTs designed and taught four proof-oriented lessons in local schools, video recorded these lessons, and reflected on them. In this paper, we focus on one PST – Nancy, who took the course in Fall 2020 during the pandemic, when the school-based experience moved online. We analyzed how Nancy’s Mathematical Knowledge for Teaching Proof (MKT-P) evolved through her attempts to teach proof online and through repeated cycles of reflection. 
    more » « less
  2. Olanoff, D. ; Johnson, K. ; Spitzer, S. (Ed.)
    It has been suggested that integrating reasoning and proof in mathematics teaching requires a special type of teacher knowledge - Mathematical Knowledge for Teaching Proof (MKT-P). Yet, several important questions about the nature of MKT-P remain open, specifically, whether MKT-P is a type of knowledge specific to teachers, and whether MKT-P can be improved through intervention. We explored these questions by comparing performance on an MKT-P questionnaire of in-service secondary mathematics teachers, undergraduate STEM majors, and pre-service secondary mathematics teachers. The latter group completed the questionnaire twice- before and after participating in a capstone course, Mathematical Reasoning and Proving for Secondary Teachers. Our data suggest that MKT-P is indeed a special kind of knowledge specific to teachers and it can be improved through interventions. 
    more » « less
  3. Proof and reasoning are central to learning mathematics with understanding. Yet proof is seen as challenging to teach and to learn. In a capstone course for preservice teachers, we developed instructional modules that guided prospective secondary mathematics teachers (PSTs) through a cycle of learning about the logical aspects of proof, then planning and implementing lessons in secondary classrooms that integrate these aspects with traditional mathematics curriculum in the United States. In this paper we highlight our framework on mathematical knowledge for teaching proof and focus on some of the logical aspects of proof that are seen as particularly challenging (four proof themes). We analyze 60 lesson plans, video recordings of a subset of 13 enacted lessons, and the PSTs’ self- reported data to shed light on how the PSTs planned and enacted lessons that integrate these proof themes. The results provide insights into successes and challenges the PSTs encountered in this process and illustrate potential pathways for preparing PSTs to enact reasoning and proof in secondary classrooms. We also highlight the design principles for supporting the development of PSTs’ mathematical knowledge for teaching proof. 
    more » « less
  4. Abstract

    Mathematics teacher education programs in the United States are charged with preparing prospective secondary teachers (PSTs) to teach reasoning and proving across grade levels and mathematical topics. Although most programs require a course on proof, PSTs often perceive it as disconnected from their future classroom practice. Our design research project developed a capstone courseMathematical Reasoning and Proving for Secondary Teachersand systematically studied its effect on PSTs’ content and pedagogical knowledge specific to proof. This paper focuses on one course module—Quantification and the Role of Examples in Proving,a topic which poses persistent difficulties to students and teachers alike. The analysis suggests that after the course, PSTs’ content and pedagogical knowledge of the role of examples in proving increased. We provide evidence from multiple data sources: pre-and post-questionnaires, PSTs’ responses to the in-class activities, their lesson plans, reflections on lesson enactment, and self-report. We discuss design principles that supported PSTs’ learning and their applicability beyond the study context.

     
    more » « less
  5. The design-based research approach was used to develop and study a novel capstone course: Mathematical Reasoning and Proving for Secondary Teachers. The course aimed to enhance prospective secondary teachers’ (PSTs) content and pedagogical knowledge by emphasizing reasoning and proving as an overarching approach for teaching mathematics at all levels. The course focused on four proof-themes: quantified statements, conditional statements, direct proof and indirect reasoning. The PSTs strengthened their own knowledge of these themes, and then developed and taught in local schools a lesson incorporating the proof-theme within an ongoing mathematical topic. Analysis of the first-year data shows enhancements of PSTs’ content and pedagogical knowledge specific to proving. 
    more » « less