skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: “Climate response functions” for the Arctic Ocean: a proposed coordinated modelling experiment
Abstract. A coordinated set of Arctic modelling experiments, which explore how the Arctic responds to changes in external forcing, is proposed. Our goal is to compute and compare climate response functions (CRFs) – the transient response of key observable indicators such as sea-ice extent, freshwater content of the Beaufort Gyre, etc. – to abrupt step changes in forcing fields across a number of Arctic models. Changes in wind, freshwater sources, and inflows to the Arctic basin are considered. Convolutions of known or postulated time series of these forcing fields with their respective CRFs then yield the (linear) response of these observables. This allows the project to inform, and interface directly with, Arctic observations and observers and the climate change community. Here we outline the rationale behind such experiments and illustrate our approach in the context of a coarse-resolution model of the Arctic based on the MITgcm. We conclude by summarizing the expected benefits of such an activity and encourage other modelling groups to compute CRFs with their own models so that we might begin to document their robustness to model formulation, resolution, and parameterization.  more » « less
Award ID(s):
1302884
PAR ID:
10101423
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Geoscientific Model Development
Volume:
10
Issue:
7
ISSN:
1991-9603
Page Range / eLocation ID:
2833 to 2848
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A coordinated set of Arctic modeling experiments is proposed which explore how the Arctic responds to changes in external forcing. Our goal is to compute and compare 'Climate Response Functions' (CRFs) – the transient response of key observable indicators such as sea-ice extent, freshwater content of the Beaufort Gyre etc. – to abrupt 'step' changes in forcing fields across a number of Arctic models. Changes in wind, freshwater sources and inflows to the Arctic basin are considered. Convolutions of known or postulated time-series of these forcing fields with their respective CRFs then yields the (linear) response of these observables. This allows the project to inform, and interface directly with, Arctic observations and observers and IPCC models and the climate change community. Here we outline the rationale behind such experiments and illustrate our approach in the context of a coarse-resolution model of the Arctic based on the MITgcm. We conclude by outlining the expected benefits of such an activity and encourage other modeling groups to compute CRFs with their own models so that we might begin to document how robust they are to model formulation, resolution and parameterization. 
    more » « less
  2. Abstract Climate models generally overestimate observed Southern Ocean surface warming trends over the past three decades. This discrepancy could be due to biased surface freshwater fluxes in climate models, which underestimate observed precipitation increases and do not account for Antarctic Ice Sheet and shelf mass loss. Though past modeling experiments show surface cooling in response to freshwater perturbations, sea surface temperature (SST) responses vary widely across models. To address these ambiguities, we compute linear SST response functions for standardized freshwater flux increases across a subset of CMIP6 models. For 1990–2021, underestimated freshwater fluxes can explain up to 60% of the model‐observation SST trend difference. The response functions reveal that Southern Ocean SST trends are more sensitive to freshwater fluxes concentrated along the Antarctic margin versus more spatially distributed fluxes. Our results quantify, for the first time, the impact of missing freshwater forcing on Southern Ocean SST trends across a multi‐model ensemble. 
    more » « less
  3. Abstract Over the past decades, Arctic climate has exhibited significant changes characterized by strong Pan-Arctic warming and a large scale wind shift trending toward an anticyclonic anomaly centered over Greenland and the Arctic ocean. Recent work has suggested that this wind change is able to warm the Arctic atmosphere and melt sea ice through dynamical-driven warming, moistening and ice drift effects. However, previous examination of this linkage lacks a capability to fully consider the complex nature of the sea ice response to the wind change. In this study, we perform a more rigorous test of this idea by using a coupled high-resolution modelling framework with observed winds nudged over the Arctic that allows for a comparison of these wind-induced effects with observations and simulated effects forced by anthropogenic forcing. Our nudging simulation can well capture observed variability of atmospheric temperature, sea ice and the radiation balance during the Arctic summer and appears to simulate around 30% of Arctic warming and sea ice melting over the whole period (1979-2020) and more than 50% over the period 2000 to 2012, which is the fastest Arctic warming decade in the satellite era. In particular, in the summer of 2020, a similar wind pattern reemerged to induce the second-lowest sea ice extent since 1979, suggesting that large scale wind changes in the Arctic is essential in shaping Arctic climate on interannual and interdecadal time scales and may be critical to determine Arctic climate variability in the coming decades. 
    more » « less
  4. null (Ed.)
    We explore the response of wintertime Arctic sea ice growth to strong cyclones and to large-scale circulation patterns on the daily scale using Earth system model output in phase 5 of the Coupled Model Intercomparison Project (CMIP5). A combined metrics ranking method selects three CMIP5 models that are successful in reproducing the wintertime Arctic dipole (AD) pattern. A cyclone identification method is applied to select strong cyclones in two subregions in the North Atlantic to examine their different impacts on sea ice growth. The total change of sea ice growth rate (SGR) is split into those respectively driven by the dynamic and thermodynamic atmospheric forcing. Three models reproduce the downward longwave radiation anomalies that generally match thermodynamic SGR anomalies in response to both strong cyclones and large-scale circulation patterns. For large-scale circulation patterns, the negative AD outweighs the positive Arctic Oscillation in thermodynamically inhibiting SGR in both impact area and magnitude. Despite the disagreement on the spatial distribution, the three CMIP5 models agree on the weaker response of dynamic SGR than thermodynamic SGR. As the Arctic warms, the thinner sea ice results in more ice production and smaller spatial heterogeneity of thickness, dampening the SGR response to the dynamic forcing. The higher temperature increases the specific heat of sea ice, thus dampening the SGR response to the thermodynamic forcing. In this way, the atmospheric forcing is projected to contribute less to change daily SGR in the future climate. 
    more » « less
  5. Abstract This study examines the Arctic surface air temperature response to regional aerosol emissions reductions using three fully coupled chemistry–climate models: National Center for Atmospheric Research-Community Earth System Model version 1, Geophysical Fluid Dynamics Laboratory-Coupled Climate Model version 3 (GFDL-CM3) and Goddard Institute for Space Studies-ModelE version 2. Each of these models was used to perform a series of aerosol perturbation experiments, in which emissions of different aerosol types (sulfate, black carbon (BC), and organic carbon) in different northern mid-latitude source regions, and of biomass burning aerosol over South America and Africa, were substantially reduced or eliminated. We find that the Arctic warms in nearly every experiment, the only exceptions being the U.S. and Europe BC experiments in GFDL-CM3 in which there is a weak and insignificant cooling. The Arctic warming is generally larger than the global mean warming (i.e. Arctic amplification occurs), particularly during non-summer months. The models agree that changes in the poleward atmospheric moisture transport are the most important factor explaining the spread in Arctic warming across experiments: the largest warming tends to coincide with the largest increases in moisture transport into the Arctic. In contrast, there is an inconsistent relationship (correlation) across experiments between the local radiative forcing over the Arctic and the simulated Arctic warming, with this relationship being positive in one model (GFDL-CM3) and negative in the other two. Our results thus highlight the prominent role of poleward energy transport in driving Arctic warming and amplification, and suggest that the relative importance of poleward energy transport and local forcing/feedbacks is likely to be model dependent. 
    more » « less