skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Fire and Smoke Model Evaluation Experiment—A Plan for Integrated, Large Fire–Atmosphere Field Campaigns
The Fire and Smoke Model Evaluation Experiment (FASMEE) is designed to collect integrated observations from large wildland fires and provide evaluation datasets for new models and operational systems. Wildland fire, smoke dispersion, and atmospheric chemistry models have become more sophisticated, and next-generation operational models will require evaluation datasets that are coordinated and comprehensive for their evaluation and advancement. Integrated measurements are required, including ground-based observations of fuels and fire behavior, estimates of fire-emitted heat and emissions fluxes, and observations of near-source micrometeorology, plume properties, smoke dispersion, and atmospheric chemistry. To address these requirements the FASMEE campaign design includes a study plan to guide the suite of required measurements in forested sites representative of many prescribed burning programs in the southeastern United States and increasingly common high-intensity fires in the western United States. Here we provide an overview of the proposed experiment and recommendations for key measurements. The FASMEE study provides a template for additional large-scale experimental campaigns to advance fire science and operational fire and smoke models.  more » « less
Award ID(s):
1664175
PAR ID:
10101490
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Atmosphere
Volume:
10
Issue:
2
ISSN:
2073-4433
Page Range / eLocation ID:
66
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Forecasting fire growth, plume rise and smoke impacts on air quality remains a challenging task. Wildland fires dynamically interact with the atmosphere, which can impact fire behavior, plume rises, and smoke dispersion. For understory fires, the fire propagation is driven by winds attenuated by the forest canopy. However, most numerical weather prediction models providing meteorological forcing for fire models are unable to resolve canopy winds. In this study, an improved canopy model parameterization was implemented within a coupled fire-atmosphere model (WRF-SFIRE) to simulate a prescribed burn within a forested plot. Simulations with and without a canopy wind model were generated to determine the sensitivity of fire growth, plume rise, and smoke dispersion to canopy effects on near-surface wind flow. Results presented here found strong linkages between the simulated fire rate of spread, heat release and smoke plume evolution. The standard WRF-SFIRE configuration, which uses a logarithmic interpolation to estimate sub-canopy winds, overestimated wind speeds (by a factor 2), fire growth rates and plume rise heights. WRF-SFIRE simulations that implemented a canopy model based on a non-dimensional wind profile, saw significant improvements in sub-canopy winds, fire growth rates and smoke dispersion when evaluated with observations. 
    more » « less
  2. Research has shown that climate change creates warmer temperatures and drier conditions, leading to longer wildfire seasons and increased wildfire risks in the United States. These factors have, in turn, led to increases in the frequency, extent, and severity of wildfires in recent years. Given the danger posed by wildland fires to people, property, wildlife, and the environment, there is an urgent need to provide tools for effective wildfire management. Early detection of wildfires is essential to minimizing potentially catastrophic destruction. To that end, in this paper, we present our work on integrating multiple data sources into SmokeyNet, a deep learning model using spatiotemporal information to detect smoke from wildland fires. We present Multimodal SmokeyNet and SmokeyNet Ensemble for multimodal wildland fire smoke detection using satellite-based fire detections, weather sensor measurements, and optical camera images. An analysis is provided to compare these multimodal approaches to the baseline SmokeyNet in terms of accuracy metrics, as well as time-to-detect, which is important for the early detection of wildfires. Our results show that incorporating weather data in SmokeyNet improves performance numerically in terms of both F1 and time-to-detect over the baseline with a single data source. With a time-to-detect of only a few minutes, SmokeyNet can be used for automated early notification of wildfires, providing a useful tool in the fight against destructive wildfires. 
    more » « less
  3. The size and frequency of wildland fires in the western United States have dramatically increased in recent years. On high-fire-risk days, a small fire ignition can rapidly grow and become out of control. Early detection of fire ignitions from initial smoke can assist the response to such fires before they become difficult to manage. Past deep learning approaches for wildfire smoke detection have suffered from small or unreliable datasets that make it difficult to extrapolate performance to real-world scenarios. In this work, we present the Fire Ignition Library (FIgLib), a publicly available dataset of nearly 25,000 labeled wildfire smoke images as seen from fixed-view cameras deployed in Southern California. We also introduce SmokeyNet, a novel deep learning architecture using spatiotemporal information from camera imagery for real-time wildfire smoke detection. When trained on the FIgLib dataset, SmokeyNet outperforms comparable baselines and rivals human performance. We hope that the availability of the FIgLib dataset and the SmokeyNet architecture will inspire further research into deep learning methods for wildfire smoke detection, leading to automated notification systems that reduce the time to wildfire response. 
    more » « less
  4. Fires in the wildland-urban interface (WUI) are a global issue with growing importance. However, the impact of WUI fires on air quality and health is less understood compared to that of fires in wildland. We analyze WUI fire impacts on air quality and health at the global scale using a multi-scale atmospheric chemistry model—the Multi-Scale Infrastructure for Chemistry and Aerosols model (MUSICA). WUI fires have notable impacts on key air pollutants [e.g., carbon monoxide (CO), nitrogen dioxide (NO2), fine particulate matter (PM2.5), and ozone (O3)]. The health impact of WUI fire emission is disproportionately large compared to wildland fires primarily because WUI fires are closer to human settlement. Globally, the fraction of WUI fire–caused annual premature deaths (APDs) to all fire–caused APDs is about three times of the fraction of WUI fire emissions to all fire emissions. The developed model framework can be applied to address critical needs in understanding and mitigating WUI fires and their impacts. 
    more » « less
  5. Abstract One of the primary challenges associated with evaluating smoke models is the availability of observations. The limited density of traditional air quality monitoring networks makes evaluating wildfire smoke transport challenging, particularly over regions where smoke plumes exhibit significant spatiotemporal variability. In this study, we analyzed smoke dispersion for the 2018 Pole Creek and Bald Mountain Fires, which were located in central Utah. Smoke simulations were generated using a coupled fire‐atmosphere model, which simultaneously renders fire growth, fire emissions, plume rise, smoke dispersion, and fire‐atmosphere interactions. Smoke simulations were evaluated using PM2.5observations from publicly accessible fixed sites and a semicontinuously running mobile platform. Calibrated measurements of PM2.5made by low‐cost sensors from the Air Quality and yoU (AQ&U) network were within 10% of values reported at nearby air quality sites that used Federal Equivalent Methods. Furthermore, results from this study show that low‐cost sensor networks and mobile measurements are useful for characterizing smoke plumes while also serving as an invaluable data set for evaluating smoke transport models. Finally, coupled fire‐atmosphere model simulations were able to capture the spatiotemporal variability of wildfire smoke in complex terrain for an isolated smoke event caused by local fires. Results here suggest that resolving local drainage flow could be critical for simulating smoke transport in regions of significant topographic relief. 
    more » « less