skip to main content


Title: Existence and regularity of minimizers for nonlocal energy functionals
In this paper, we consider minimizers for nonlocal energy functionals generalizing elastic energies that are connected with the theory of peridynamics [19] or nonlocal diffusion models [1]. We derive nonlocal versions of the Euler-Lagrange equations under two sets of growth assumptions for the integrand. Existence of minimizers is shown for integrands with joint convexity (in the function and nonlocal gradient components). By using the convolution structure, we show regularity of solutions for certain Euler-Lagrange equations. No growth assumptions are needed for the existence and regularity of minimizers results, in contrast with the classical theory.  more » « less
Award ID(s):
1716790
NSF-PAR ID:
10101514
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Differential and integral equations
Volume:
31
Issue:
11/12
ISSN:
0893-4983
Page Range / eLocation ID:
807-832
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We focus on the existence and rigidity problems of the vectorial Peierls–Nabarro (PN) model for dislocations. Under the assumption that the misfit potential on the slip plane only depends on the shear displacement along the Burgers vector, a reduced non-local scalar Ginzburg–Landau equation with an anisotropic positive (if Poisson ratio belongs to (−1/2, 1/3)) singular kernel is derived on the slip plane. We first prove that minimizers of the PN energy for this reduced scalar problem exist. Starting from H 1/2 regularity, we prove that these minimizers are smooth 1D profiles only depending on the shear direction, monotonically and uniformly converge to two stable states at far fields in the direction of the Burgers vector. Then a De Giorgi-type conjecture of single-variable symmetry for both minimizers and layer solutions is established. As a direct corollary, minimizers and layer solutions are unique up to translations. The proof of this De Giorgi-type conjecture relies on a delicate spectral analysis which is especially powerful for nonlocal pseudo-differential operators with strong maximal principle. All these results hold in any dimension since we work on the domain periodic in the transverse directions of the slip plane. The physical interpretation of this rigidity result is that the equilibrium dislocation on the slip plane only admits shear displacements and is a strictly monotonic 1D profile provided exclusive dependence of the misfit potential on the shear displacement. 
    more » « less
  2. Task-specific, trajectory-based control methods commonly used in exoskeletons may be appropriate for individuals with paraplegia, but they overly constrain the volitional motion of individuals with remnant voluntary ability (representing a far larger population). Human-exoskeleton systems can be represented in the form of the Euler-Lagrange equations or, equivalently, the port-controlled Hamiltonian equations to design control laws that provide task-invariant assistance across a continuum of activities/environments by altering energetic properties of the human body. We previously introduced a port-controlled Hamiltonian framework that parameterizes the control law through basis functions related to gravitational and gyroscopic terms, which are optimized to fit normalized able-bodied joint torques across multiple walking gaits on different ground inclines. However, this approach did not have the flexibility to reproduce joint torques for a broader set of activities, including stair climbing and stand-to-sit, due to strict assumptions related to input-output passivity, which ensures the human remains in control of energy growth in the closed-loop dynamics. To provide biomimetic assistance across all primary activities of daily life, this paper generalizes this energy shaping framework by incorporating vertical ground reaction forces and global planar orientation into the basis set, while preserving passivity between the human joint torques and human joint velocities. We present an experimental implementation on a powered knee-ankle exoskeleton used by three able-bodied human subjects during walking on various inclines, ramp ascent/descent, and stand-to-sit, demonstrating the versatility of this control approach and its effect on muscular effort. 
    more » « less
  3. We prove the existence, uniqueness, and regularity of minimizers of a polyconvex functional in two and three dimensions, which corresponds to theH1-projection of measure-preserving maps. Our result introduces a new criteria on the uniqueness of the minimizer, based on the smallness of the lagrange multiplier. No estimate on the second derivatives of the pressure is needed to get a unique global minimizer. As an application, we construct a minimizing movement scheme to constructLr-solutions of the Navier–Stokes equation (NSE) for a short time interval.

     
    more » « less
  4. Abstract

    In this paper we provide a complete local well-posedness theory for the free boundary relativistic Euler equations with a physical vacuum boundary on a Minkowski background. Specifically, we establish the following results: (i) local well-posedness in the Hadamard sense, i.e., local existence, uniqueness, and continuous dependence on the data; (ii) low regularity solutions: our uniqueness result holds at the level of Lipschitz velocity and density, while our rough solutions, obtained as unique limits of smooth solutions, have regularity only a half derivative above scaling; (iii) stability: our uniqueness in fact follows from a more general result, namely, we show that a certain nonlinear functional that tracks the distance between two solutions (in part by measuring the distance between their respective boundaries) is propagated by the flow; (iv) we establish sharp, essentially scale invariant energy estimates for solutions; (v) a sharp continuation criterion, at the level of scaling, showing that solutions can be continued as long as the velocity is in$$L^1_t Lip$$Lt1Lipand a suitable weighted version of the density is at the same regularity level. Our entire approach is in Eulerian coordinates and relies on the functional framework developed in the companion work of the second and third authors on corresponding non relativistic problem. All our results are valid for a general equation of state$$p(\varrho )= \varrho ^\gamma $$p(ϱ)=ϱγ,$$\gamma > 1$$γ>1.

     
    more » « less
  5. null (Ed.)
    We consider a recent plate model obtained as a scaled limit of the three-dimensional Biot system of poro-elasticity. The result is a ‘2.5’-dimensional linear system that couples traditional Euler–Bernoulli plate dynamics to a pressure equation in three dimensions, where diffusion acts only transversely. We allow the permeability function to be time dependent, making the problem non-autonomous and disqualifying much of the standard abstract theory. Weak solutions are defined in the so-called quasi-static case, and the problem is framed abstractly as an implicit, degenerate evolution problem. Utilizing the theory for weak solutions for implicit evolution equations, we obtain existence of solutions. Uniqueness is obtained under additional hypotheses on the regularity of the permeability function. We address the inertial case in an appendix, by way of semigroup theory. The work here provides a baseline theory of weak solutions for the poro-elastic plate and exposits a variety of interesting related models and associated analytical investigations. 
    more » « less