Since the days of Hertz, radio transmitters have evolved from rudimentary circuits emitting around 50 MHz to modern ubiquitous Wi-Fi devices operating at gigahertz radio bands. As wireless data traffic continues to increase, there is a need for new communication technologies capable of high-frequency operation for high-speed data transfer. Here, we give a proof of concept of a compact radio frequency transmitter based on a semiconductor laser frequency comb. In this laser, the beating among the coherent modes oscillating inside the cavity generates a radio frequency current, which couples to the electrodes of the device. We show that redesigning the top contact of the laser allows one to exploit the internal oscillatory current to drive a dipole antenna, which radiates into free space. In addition, direct modulation of the laser current permits encoding a signal in the radiated radio frequency carrier. Working in the opposite direction, the antenna can receive an external radio frequency signal, couple it to the active region, and injection lock the laser. These results pave the way for applications and functionality in optical frequency combs, such as wireless radio communication and wireless synchronization to a reference source.
- Publication Date:
- NSF-PAR ID:
- 10101658
- Journal Name:
- Proceedings of the National Academy of Sciences
- Page Range or eLocation-ID:
- Article No. 201903534
- ISSN:
- 0027-8424
- Publisher:
- Proceedings of the National Academy of Sciences
- Sponsoring Org:
- National Science Foundation
More Like this
-
Full-duplex (FD) wireless is an emerging wireless communication paradigm where the transmitter and the receiver operate simultaneously at the same frequency. One major challenge in realizing FD wireless is the interference of the TX signal saturating the receiver, commonly referred to self-interference (SI). Traditionally, self-interference cancellation (SIC) is achieved in the antenna, RF/analog, and digital domains. In the antenna domain, SIC can be achieved using a pair of separate TX and RX antennas, or using a single antenna shared by the TX and RX through a magnetic circulator, which is usually bulky, expensive, and not integrable with CMOS. Recent advances, however, have shown the feasibility of realizing high-performance non-reciprocal circulators in CMOS based on spatio-temporal modulation. In this work, we demonstrate a high power handling FD radio using a USRP SDR which employs SIC (i) at the antenna interface using a watt-level power-handling CMOS integrated, magnetic-free circulator, (ii) in the RF domain using a compact RF canceler, and (iii) in the digital domain. Our prototyped FD radio achieves +95 dB overall SIC at +15dBm TX power level. We analyze the effects of the circulator TX-RX non-linearity on the total achievable SIC
-
Full-duplex (FD) wireless is an emerging wireless communication paradigm where the transmitter and the receiver operate simultaneously at the same frequency. One major challenge in realizing FD wireless is the interference of the TX signal saturating the receiver, commonly referred to self-interference (SI). Traditionally, self-interference cancellation (SIC) is achieved in the antenna, RF/analog, and digital domains. In the antenna domain, SIC can be achieved using a pair of separate TX and RX antennas, or using a single antenna shared by the TX and RX through a magnetic circulator, which is usually bulky, expensive, and not integrable with CMOS. Recent advances, however, have shown the feasibility of realizing high-performance non-reciprocal circulators in CMOS based on spatio-temporal modulation. In this work, we demonstrate a high power handling FD radio using a USRP SDR which employs SIC (i) at the antenna interface using a watt-level power-handling CMOS integrated, magnetic-free circulator, (ii) in the RF domain using a compact RF canceler, and (iii) in the digital domain. Our prototyped FD radio achieves +95 dB overall SIC at +15dBm TX power level. We analyze the effects of the circulator TX-RX non-linearity on the total achievable SIC.
-
1. Description of the objectives and motivation for the contribution to ECE education The demand for wireless data transmission capacity is increasing rapidly and this growth is expected to continue due to ongoing prevalence of cellular phones and new and emerging bandwidth-intensive applications that encompass high-definition video, unmanned aerial systems (UAS), intelligent transportation systems (ITS) including autonomous vehicles, and others. Meanwhile, vital military and public safety applications also depend on access to the radio frequency spectrum. To meet these demands, the US federal government is beginning to move from the proven but inefficient model of exclusive frequency assignments to a more-efficient, shared-spectrum approach in some bands of the radio frequency spectrum. A STEM workforce that understands the radio frequency spectrum and applications that use the spectrum is needed to further increase spectrum efficiency and cost-effectiveness of wireless systems over the next several decades to meet anticipated and unanticipated increases in wireless data capacity. 2. Relevant background including literature search examples if appropriate CISCO Systems’ annual survey indicates continued strong growth in demand for wireless data capacity. Meanwhile, undergraduate electrical and computer engineering courses in communication systems, electromagnetics, and networks tend to emphasize mathematical and theoretical fundamentals and higher-layer protocols, withmore »
-
Wireless systems which can simultaneously transmit and receive (STAR) are gaining significant academic and commercial interest due to their wide range of applications such as full-duplex (FD) wireless communication and FMCW radar. FD radios, where the transmitter (TX) and the receiver (RX) operate simultaneously at the same frequency, can potentially double the data rate at the physical layer and can provide many other advantages in the higher layers. The antenna interface of an FD radio is typically built using a multi-antenna system, or a single antenna through a bulky magnetic circulator or a lossy reciprocal hybrid. However, recent advances in CMOS-integrated circulators through spatio-temporal conductivity modulation have shown promise and potential to replace traditional bulky magnetic circulators. However, unlike magnetic circulators, CMOS-integrated non-magnetic circulators will introduce some nonlinear distortion and spurious tones arising from their clock circuitry. In this work, we present an FD radio using a highly linear CMOS integrable circulator, a frequency-flat RF canceler, and a USRP software-defined radio (SDR). At TX power level of +15 dBm, the implemented FD radio achieves a self-interference cancellation (SIC) of +55 dB from the circulator and RF canceler in the RF domain, and an overall SIC of +95 dB together withmore »
-
Wireless systems which can simultaneously transmit and receive (STAR) are gaining significant academic and commercial interest due to their wide range of applications such as full-duplex (FD) wireless communication and FMCW radar. FD radios, where the transmitter (TX) and the receiver (RX) operate simultaneously at the same frequency, can potentially double the data rate at the physical layer and can provide many other advantages in the higher layers. The antenna interface of an FD radio is typically built using a multi-antenna system, or a single antenna through a bulky magnetic circulator or a lossy reciprocal hybrid. However, recent advances in CMOS-integrated circulators through spatio-temporal conductivity modulation have shown promise and potential to replace traditional bulky magnetic circulators. However, unlike magnetic circulators, CMOS-integrated non-magnetic circulators will introduce some nonlinear distortion and spurious tones arising from their clock circuitry. In this work, we present an FD radio using a highly linear CMOS integrable circulator, a frequency-flat RF canceler, and a USRP software-defined radio (SDR). At TX power level of +15 dBm, the implemented FD radio achieves a self-interference cancellation (SIC) of +55dB from the circulator and RF canceler in the RF domain, and an overall SIC of +95dB together with SIC inmore »