Gametic isolation is thought to play an important role in the evolution of reproductive isolation in broadcast‐spawning marine invertebrates. However, it is unclear whether gametic isolation commonly evolves early in the speciation process or only accumulates after other reproductive barriers are already in place. It is also unknown whether gametic isolation is an effective barrier to introgression following speciation. Here, we used whole‐genome sequencing data and multiple complementary phylogenomic approaches to test whether the well‐documented gametic incompatibilities among the strongylocentrotid sea urchins have limited introgression. We quantified phylogenetic discordance, inferred reticulate phylogenetic networks, and applied the
Mitochondria have been known to be involved in speciation through the generation of Dobzhansky–Muller incompatibilities, where functionally neutral co-evolution between mitochondrial and nuclear genomes can cause dysfunction when alleles are recombined in hybrids. We propose that adaptive mitochondrial divergence between populations can not only produce intrinsic (Dobzhansky–Muller) incompatibilities, but could also contribute to reproductive isolation through natural and sexual selection against migrants, post-mating prezygotic isolation, as well as by causing extrinsic reductions in hybrid fitness. We describe how these reproductive isolating barriers can potentially arise through adaptive divergence of mitochondrial function in the absence of mito-nuclear coevolution, a departure from more established views. While a role for mitochondria in the speciation process appears promising, we also highlight critical gaps of knowledge: (1) many systems with a potential for mitochondrially-mediated reproductive isolation lack crucial evidence directly linking reproductive isolation and mitochondrial function; (2) it often remains to be seen if mitochondrial barriers are a driver or a consequence of reproductive isolation; (3) the presence of substantial gene flow in the presence of mito-nuclear incompatibilities raises questions whether such incompatibilities are strong enough to drive speciation to completion; and (4) it remains to be tested how mitochondrial effects on reproductive isolation compare when multiple mechanisms of reproductive isolation coincide. We hope this perspective and the proposed research plans help to inform future studies of mitochondrial adaptation in a manner that links genotypic changes to phenotypic adaptations, fitness, and reproductive isolation in natural systems, helping to clarify the importance of mitochondria in the formation and maintenance of biological diversity.
more » « less- NSF-PAR ID:
- 10101722
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Integrative and Comparative Biology
- Volume:
- 59
- Issue:
- 4
- ISSN:
- 1540-7063
- Page Range / eLocation ID:
- p. 900-911
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Δ statistic using gene tree topologies reconstructed from multiple sequence alignments of protein‐coding single‐copy orthologs. In addition, we conducted ABBA–BABA tests on genome‐wide single nucleotide variants and reconstructed a phylogeny of mitochondrial genomes. Our results revealed strong mito‐nuclear discordance and considerable nonrandom gene tree discordance that cannot be explained by incomplete lineage sorting alone. Eight of the nine species examined demonstrated a history of introgression with at least one other species or ancestral lineage, indicating that introgression was common during the diversification of the strongylocentrotid urchins. There was strong support for introgression between four extant species pairs (Strongylocentrotus pallidus ⇔S. droebachiensis ,S. intermedius ⇔S. pallidus ,S. purpuratus ⇔S. fragilis , andMesocentrotus franciscanus ⇔Pseudocentrotus depressus ) and additional evidence for introgression on internal branches of the phylogeny. Our results suggest that the existing gametic incompatibilities among the strongylocentrotid urchin species have not been a complete barrier to hybridization and introgression following speciation. Their continued divergence in the face of widespread introgression indicates that other reproductive isolating barriers likely exist and may have been more critical in establishing reproductive isolation early in speciation. -
Abstract All mitochondrial-encoded proteins and RNAs function through interactions with nuclear-encoded proteins, which are critical for mitochondrial performance and eukaryotic fitness. Coevolution maintains inter-genomic (i.e., mitonuclear) compatibility within a taxon, but hybridization can disrupt coevolved interactions, resulting in hybrid breakdown. Thus, mitonuclear incompatibilities may be important mechanisms underlying reproductive isolation and, potentially, speciation. Here we utilize Pool-seq to assess the effects of mitochondrial genotype on nuclear allele frequencies in fast- and slow-developing reciprocal inter-population F2 hybrids between relatively low-divergence populations of the intertidal copepod Tigriopus californicus. We show that mitonuclear interactions lead to elevated frequencies of coevolved (i.e., maternal) nuclear alleles on two chromosomes in crosses between populations with 1.5% or 9.6% fixed differences in mitochondrial DNA nucleotide sequence. However, we also find evidence of excess mismatched (i.e., noncoevolved) alleles on three or four chromosomes per cross, respectively, and of allele frequency differences consistent with effects involving only nuclear loci (i.e., unaffected by mitochondrial genotype). Thus, our results for low-divergence crosses suggest an underlying role for mitonuclear interactions in variation in hybrid developmental rate, but despite substantial effects of mitonuclear coevolution on individual chromosomes, no clear bias favoring coevolved interactions overall.
-
enetic variation in mitochondrial DNA (mtDNA) provides adaptive potential although the underlying genetic architecture of fitness components within mtDNAs is not known. To dissect functional variation within mtDNAs, we first identified naturally occurring mtDNAs that conferred high or low fitness in Saccharomyces cerevisiae by comparing growth in strains containing identical nuclear genotypes but different mtDNAs. During respiratory growth under temperature and oxidative stress conditions, mitotype effects were largely independent of nuclear genotypes even in the presence of mitonuclear interactions. Recombinant mtDNAs were generated to determine fitness components within high and low fitness mtDNAs. Based on phenotypic distributions of isogenic strains containing recombinant mtDNAs, we found that multiple loci contributed to mitotype fitness differences. These mitochondrial loci interacted in epistatic, non-additive ways in certain environmental conditions. Mito-mito epistasis (i.e. non-additive interactions between mitochondrial loci) influenced fitness in progeny from 4 different crosses, suggesting that mito-mito epistasis is a widespread phenomenon in yeast and other systems with recombining mtDNAs. Furthermore, we found that interruption of coadapted mito-mito interactions produced recombinant mtDNAs with lower fitness. Our results demonstrate that mito-mito epistasis results in functional variation through mitochondrial recombination in fungi, providing modes for adaptive evolution and the generation of mito-mito incompatibilities.more » « less
-
Phenotypic Variation in Mitochondria-Related Performance Traits Across New Zealand Snail PopulationsSynopsis Mitochondrial function is critical for energy homeostasis and should shape how genetic variation in metabolism is transmitted through levels of biological organization to generate stability in organismal performance. Mitochondrial function is encoded by genes in two distinct and separately inherited genomes—the mitochondrial genome and the nuclear genome—and selection is expected to maintain functional mito-nuclear interactions. The documented high levels of polymorphism in genes involved in these mito-nuclear interactions and wide variation for mitochondrial function demands an explanation for how and why variability in such a fundamental trait is maintained. Potamopyrgus antipodarum is a New Zealand freshwater snail with coexisting sexual and asexual individuals and, accordingly, contrasting systems of separate vs. co-inheritance of nuclear and mitochondrial genomes. As such, this snail provides a powerful means to dissect the evolutionary and functional consequences of mito-nuclear variation. The lakes inhabited by P. antipodarum span wide environmental gradients, with substantial across-lake genetic structure and mito-nuclear discordance. This situation allows us to use comparisons across reproductive modes and lakes to partition variation in cellular respiration across genetic and environmental axes. Here, we integrated cellular, physiological, and behavioral approaches to quantify variation in mitochondrial function across a diverse set of wild P. antipodarum lineages. We found extensive across-lake variation in organismal oxygen consumption and behavioral response to heat stress and differences across sexes in mitochondrial membrane potential but few global effects of reproductive mode. Taken together, our data set the stage for applying this important model system for sexual reproduction and polyploidy to dissecting the complex relationships between mito-nuclear variation, performance, plasticity, and fitness in natural populations.more » « less
-
Abstract Endosymbiont‐induced cytoplasmic incompatibility (CI) may play an important role in arthropod speciation. However, whether CI consistently becomes associated or coupled with other host‐related forms of reproductive isolation (RI) to impede the transfer of endosymbionts between hybridizing populations and further the divergence process remains an open question. Here, we show that varying degrees of pre‐ and postmating RI exist among allopatric populations of two interbreeding cherry‐infesting tephritid fruit flies (
Rhagoletis cingulata andR .indifferens ) across North America. These flies display allochronic and sexual isolation among populations, as well as unidirectional reductions in egg hatch in hybrid crosses involving southwestern USA males. All populations are infected by aWolbachia strain,w Cin2, whereas a second strain,w Cin3, only co‐infects flies from the southwest USA and Mexico. Strainw Cin3 is associated with a unique mitochondrial DNA haplotype and unidirectional postmating RI, implicating the strain as the cause of CI. When coupled with nonendosymbiont RI barriers, we estimate the strength of CI associated withw Cin3 would not prevent the strain from introgressing from infected southwestern to uninfected populations elsewhere in the USA if populations were to come into secondary contact and hybridize. In contrast, cytoplasmic–nuclear coupling may impede the transfer ofw Cin3 if Mexican and USA populations were to come into contact. We discuss our results in the context of the general paucity of examples demonstrating stableWolbachia hybrid zones and whether the spread ofWolbachia among taxa can be constrained in natural hybrid zones long enough for the endosymbiont to participate in speciation.