Abstract Severe convection occurring in high-shear, low-CAPE (HSLC) environments is a common cool-season threat in the southeastern United States. Previous studies of HSLC convection document the increased operational challenges that these environments present compared to their high-CAPE counterparts, corresponding to higher false-alarm ratios and lower probability of detection for severe watches and warnings. These environments can exhibit rapid destabilization in the hours prior to convection, sometimes associated with the release of potential instability. Here, we use self-organizing maps (SOMs) to objectively identify environmental patterns accompanying HSLC cool-season severe events and associate them with variations in severe weather frequency and distribution. Large-scale patterns exhibit modest variation within the HSLC subclass, featuring strong surface cyclones accompanied by vigorous upper-tropospheric troughs and northward-extending regions of instability, consistent with prior studies. In most patterns, severe weather occurs immediately ahead of a cold front. Other convective ingredients, such as lower-tropospheric vertical wind shear, near-surface equivalent potential temperature (θe) advection, and the release of potential instability, varied more significantly across patterns. No single variable used to train SOMs consistently demonstrated differences in the distribution of severe weather occurrence across patterns. Comparison of SOMs based on upper and lower quartiles of severe occurrence demonstrated that the release of potential instability was most consistently associated with higher-impact events in comparison to other convective ingredients. Overall, we find that previously developed HSLC composite parameters reasonably identify high-impact HSLC events. Significance StatementEven when atmospheric instability is not optimal for severe convective storms, in some situations they can still occur, presenting increased challenges to forecasters. These marginal environments may occur at night or during the cool season, when people are less attuned to severe weather threats. Here, we use a sorting algorithm to classify different weather patterns accompanying such storms, and we distinguish which specific patterns and weather system features are most strongly associated with severe storms. Our goals are to increase situational awareness for forecasters and to improve understanding of the processes leading to severe convection in marginal environments.
more »
« less
The Development of Severe Vortices within Simulated High-Shear, Low-CAPE Convection
Environments characterized by large values of vertical wind shear and modest convective available potential energy (CAPE) are colloquially referred to as high-shear, low-CAPE (HSLC) environments. Convection within these environments represents a considerable operational forecasting challenge. Generally, it has been determined that large low-level wind shear and steep low-level lapse rates—along with synoptic-scale forcing for ascent—are common ingredients supporting severe HSLC convection. This work studies the specific processes that lead to the development of strong surface vortices in HSLC convection, particularly associated with supercells embedded within a quasi-linear convective system (QLCS), and how these processes are affected by varying low-level shear vector magnitudes and lapse rates. Analysis of a control simulation, conducted with a base state similar to a typical HSLC severe environment, reveals that the key factors in the development of a strong surface vortex in HSLC embedded supercells are (i) a strong low- to midlevel mesocyclone, and (ii) a subsequent strong low-level updraft that results from the intense, upward-pointing dynamic perturbation pressure gradient acceleration. Through a matrix of high-resolution, idealized simulations, it is determined that sufficient low-level shear vector magnitudes are necessary for the development of low- to midlevel vertical vorticity [factor (i)], while steeper low-level lapse rates provide stronger initial low-level updrafts [factor (ii)]. This work shows why increased low-level lapse rates and low-level shear vector magnitudes are important to HSLC convection on the storm scale, while also revealing similarities between surface vortexgenesis in HSLC embedded supercells and higher-CAPE supercells.
more »
« less
- Award ID(s):
- 1748715
- PAR ID:
- 10102494
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Monthly Weather Review
- Volume:
- 147
- Issue:
- 6
- ISSN:
- 0027-0644
- Page Range / eLocation ID:
- p. 2189-2216
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract In this study we compared 3.7 mln rawinsonde observations from 232 stations over Europe and North America with proximal vertical profiles from ERA5 and MERRA2 to examine how well reanalysis depicts observed convective parameters. Larger differences between soundings and reanalysis are found for thermodynamic theoretical parcel parameters, low-level lapse rates and low-level wind shear. In contrast, reanalysis best represents temperature and moisture variables, mid-tropospheric lapse rates, and mean wind. Both reanalyses underestimate CAPE, low-level moisture and wind shear, particularly when considering extreme values. Overestimation is observed for low-level lapse rates, mid-tropospheric moisture and the level of free convection. Mixed-layer parcels have overall better accuracy when compared to most-unstable, especially considering convective inhibition and lifted condensation level. Mean absolute error for both reanalyses has been steadily decreasing over the last 39 years for almost every analyzed variable. Compared to MERRA2, ERA5 has higher correlations and lower mean absolute errors. MERRA2 is typically drier and less unstable over central Europe and the Balkans, with the opposite pattern over western Russia. Both reanalyses underestimate CAPE and CIN over the Great Plains. Reanalyses are more reliable for lower elevations stations and struggle along boundaries such as coastal zones and mountains. Based on the results from this and prior studies we suggest that ERA5 is likely one of the most reliable available reanalysis for exploration of convective environments, mainly due to its improved resolution. For future studies we also recommend that computation of convective variables should use model levels that provide more accurate sampling of the boundary-layer conditions compared to less numerous pressure levels.more » « less
-
Abstract The response of severe local storms to environmental evolution across the early evening transition (EET) remains a forecasting challenge, particularly within the context of the Southeast U.S. storm climatology, which includes the increased presence of low-CAPE environments and tornadic nonsupercell modes. To disentangle these complex environmental interactions, Southeast severe convective reports spanning 2003–18 are temporally binned relative to local sunset. Sounding-derived data corresponding to each report are used to characterize how the near-storm environment evolves across the EET, and whether these changes influence the mode, frequency, and tornadic likelihood of their associated storms. High-shear, high-CAPE (HSHC) environments are contrasted with high-shear, low-CAPE (HSLC) environments to highlight physical processes governing storm maintenance and tornadogenesis in the absence of large instability. Last, statistical analysis is performed to determine which aspects of the near-storm environment most effectively discriminate between tornadic (or significantly tornadic) and nontornadic storms toward constructing new sounding-derived forecast guidance parameters for multiple modal and environmental combinations. Results indicate that HSLC environments evolve differently than HSHC environments, particularly for nonsupercell (e.g., quasi-linear convective system) modes. These low-CAPE environments sustain higher values of low-level shear and storm-relative helicity (SRH) and destabilize postsunset—potentially compensating for minimal buoyancy. Furthermore, the existence of HSLC storm environments presunset increases the likelihood of nonsupercellular tornadoes postsunset. Existing forecast guidance metrics such as the significant tornado parameter (STP) remain the most skillful predictors of HSHC tornadoes. However, HSLC tornado prediction can be improved by considering variables like precipitable water, downdraft CAPE, and effective inflow base.more » « less
-
null (Ed.)Abstract In this study we investigate convective environments and their corresponding climatological features over Europe and the United States. For this purpose, National Lightning Detection Network (NLDN) and Arrival Time Difference long-range lightning detection network (ATDnet) data, ERA5 hybrid-sigma levels, and severe weather reports from the European Severe Weather Database (ESWD) and Storm Prediction Center (SPC) Storm Data were combined on a common grid of 0.25° and 1-h steps over the period 1979–2018. The severity of convective hazards increases with increasing instability and wind shear (WMAXSHEAR), but climatological aspects of these features differ over both domains. Environments over the United States are characterized by higher moisture, CAPE, CIN, wind shear, and midtropospheric lapse rates. Conversely, 0–3-km CAPE and low-level lapse rates are higher over Europe. From the climatological perspective severe thunderstorm environments (hours) are around 3–4 times more frequent over the United States with peaks across the Great Plains, Midwest, and Southeast. Over Europe severe environments are the most common over the south with local maxima in northern Italy. Despite having lower CAPE (tail distribution of 3000–4000 J kg −1 compared to 6000–8000 J kg −1 over the United States), thunderstorms over Europe have a higher probability for convective initiation given a favorable environment. Conversely, the lowest probability for initiation is observed over the Great Plains, but, once a thunderstorm develops, the probability that it will become severe is much higher compared to Europe. Prime conditions for severe thunderstorms over the United States are between April and June, typically from 1200 to 2200 central standard time (CST), while across Europe favorable environments are observed from June to August, usually between 1400 and 2100 UTC.more » « less
-
Abstract High-shear, low-CAPE environments prevalent in the southeastern United States account for a large fraction of tornadoes and pose challenges for operational meteorologists. Yet, existing knowledge of supercell dynamics, particularly in the context of cloud-resolving modeling, is dominated by moderate- to high-CAPE environments typical of the Great Plains. This study applies high-resolution modeling to clarify the behavior of supercells in the more poorly understood low-CAPE environments, and compares them to a benchmark simulation in a higher-CAPE environment. Simulated low-CAPE supercells’ main updrafts do not approach the theoretical equilibrium level; their largest vertical velocities result not from buoyancy, but from dynamic accelerations associated with low-level mesocyclones and vortices. Surprisingly, low-CAPE tornado-like vortex parcels also sometimes stop ascending near the vortex top instead of carrying large vorticity upward into the midlevel updraft, contributing to vortex shallowness. Each of these low-CAPE behaviors is attributed to dynamic perturbation pressure gradient accelerations that are maximized in low levels, which predominate when the buoyancy is small.more » « less
An official website of the United States government
